Abstract

This work reports the mid-infrared emission properties around 2 μm in Ho3+/Yb3+ codoped germanate glasses. The glass not only possesses good chemical durability and good thermal stability but also has high mid-infrared transmittance around 2 μm (90%). In addition, the glass possesses considerably low OH content (20.45 ppm) and large spontaneous transition probability (103.38 s−1) corresponding to the Ho3+:5I75I8 transition. Moreover, the measured lifetime of Ho3+:5I7 level is as high as 7.68 ms, and the quantum efficiency at 2 μm can reach 79.4%. The energy transfer processes of Yb3+:2F5/2 level and Ho3+:5I6 level were quantitatively analyzed according to the rate equation. Results indicate that the prepared germanate glass is a promising candidate for 2 μm mid-infrared laser materials applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ho3+/Yb3+-codoped germanate–tellurite glasses for 2.0  μm emission performance

Ya-Pei Peng, Yanyan Guo, Junjie Zhang, and Long Zhang
Appl. Opt. 53(8) 1564-1569 (2014)

Ho3+/Yb3+ codoped silicate glasses for 2  μm emission performances

Ruijie Cao, Muzhi Cai, Yu Lu, Ying Tian, Feifei Huang, Shiqing Xu, and Junjie Zhang
Appl. Opt. 55(8) 2065-2070 (2016)

Positive influence of Ce3+ on effective transfer Yb3+:2F5/2 → Ho3+:5I6 in silica-germanate glass for mid-infrared applications

Tao Wang, Feifei Huang, Wenqian Cao, Yanyan Guo, Ruoshan Lei, Renguang Ye, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 7(3) 1084-1095 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
    [Crossref] [PubMed]
  2. M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-μm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
    [Crossref] [PubMed]
  3. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  4. T. Hu, D. D. Hudson, B. J. Eggleton, and S. D. Jackson, “A highly-efficient, 2.9 μm Q-switched Ho/Pr co-doped fiber laser,” in Lasers and Electro-Optics (CLEO), 2012 Conference on( 2012), pp. 1–2.
  5. F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho³⁺/Er³⁺-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
    [Crossref] [PubMed]
  6. R. Xu, J. Pan, L. Hu, and J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).
  7. J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
    [Crossref]
  8. G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced ~2μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics,” J. Non-Cryst. Solids 361, 13–16 (2013).
    [Crossref]
  9. F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
    [Crossref] [PubMed]
  10. A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express 21(4), 4560–4566 (2013).
    [Crossref] [PubMed]
  11. R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 μm,” Electron. Lett. 47(19), 1089 (2011).
    [Crossref]
  12. W. Qing, G. Jihong, J. Zhuo, L. Tao, and J. Shibin, “Mode-locked Tm-Ho fiber laser with a Sb-based SESAM,” in Lasers and Electro-Optics (CLEO), 2011 Conference on(2011), pp. 1–2.
  13. S. D. Jackson, “8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
    [Crossref]
  14. F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2 μm glass lasers,” Opt. Express 18(21), 22090–22098 (2010).
    [Crossref] [PubMed]
  15. Y. Guo, G. Gao, M. Li, L. Hu, and J. Zhang, “Er3+-doped fluoro-tellurite glass: A new choice for 2.7μm lasers,” Mater. Lett. 80, 56–58 (2012).
    [Crossref]
  16. Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett. 37(2), 268–270 (2012).
    [Crossref] [PubMed]
  17. R.-G. Duan, K.-M. Liang, and S.-R. Gu, “A new criterion for the stability of glasses,” J. Eur. Ceram. Soc. 18(8), 1131–1137 (1998).
    [Crossref]
  18. Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
    [Crossref]
  19. T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
    [Crossref]
  20. B. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  21. G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys. 37(3), 511 (1962).
    [Crossref]
  22. J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
    [Crossref]
  23. Y. P. Peng, Y. Guo, J. Zhang, and L. Zhang, “Ho³⁺Yb³⁺-codoped germanate-tellurite glasses for 2.0 μm emission performance,” Appl. Opt. 53(8), 1564–1569 (2014).
    [Crossref] [PubMed]
  24. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
    [Crossref]
  25. K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
    [Crossref] [PubMed]
  26. A. Florez, S. L. Oliveira, M. Flórez, L. A. Gómez, and L. A. O. Nunes, “Spectroscopic characterization of Ho3+ ion-doped fluoride glass,” J. Alloys Compd. 418(1-2), 238–242 (2006).
    [Crossref]
  27. Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer,” J. Appl. Phys. 106(11), 113102 (2009).
    [Crossref]
  28. L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
    [Crossref]
  29. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
    [Crossref]
  30. J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
    [Crossref]
  31. J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983).
    [Crossref]
  32. X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
    [Crossref]

2014 (5)

F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho³⁺/Er³⁺-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
[Crossref] [PubMed]

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
[Crossref]

T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
[Crossref]

Y. P. Peng, Y. Guo, J. Zhang, and L. Zhang, “Ho³⁺Yb³⁺-codoped germanate-tellurite glasses for 2.0 μm emission performance,” Appl. Opt. 53(8), 1564–1569 (2014).
[Crossref] [PubMed]

2013 (4)

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
[Crossref]

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced ~2μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics,” J. Non-Cryst. Solids 361, 13–16 (2013).
[Crossref]

A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express 21(4), 4560–4566 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Guo, G. Gao, M. Li, L. Hu, and J. Zhang, “Er3+-doped fluoro-tellurite glass: A new choice for 2.7μm lasers,” Mater. Lett. 80, 56–58 (2012).
[Crossref]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett. 37(2), 268–270 (2012).
[Crossref] [PubMed]

L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

2011 (4)

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 μm,” Electron. Lett. 47(19), 1089 (2011).
[Crossref]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
[Crossref] [PubMed]

2010 (3)

R. Xu, J. Pan, L. Hu, and J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).

J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2 μm glass lasers,” Opt. Express 18(21), 22090–22098 (2010).
[Crossref] [PubMed]

2009 (1)

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer,” J. Appl. Phys. 106(11), 113102 (2009).
[Crossref]

2008 (1)

X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
[Crossref]

2007 (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

2006 (1)

A. Florez, S. L. Oliveira, M. Flórez, L. A. Gómez, and L. A. O. Nunes, “Spectroscopic characterization of Ho3+ ion-doped fluoride glass,” J. Alloys Compd. 418(1-2), 238–242 (2006).
[Crossref]

2001 (1)

S. D. Jackson, “8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
[Crossref]

2000 (1)

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-μm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

1998 (1)

R.-G. Duan, K.-M. Liang, and S.-R. Gu, “A new criterion for the stability of glasses,” J. Eur. Ceram. Soc. 18(8), 1131–1137 (1998).
[Crossref]

1995 (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

1983 (1)

J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983).
[Crossref]

1962 (2)

B. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys. 37(3), 511 (1962).
[Crossref]

Androz, G.

Annapurna, K.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Bai, G.

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced ~2μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics,” J. Non-Cryst. Solids 361, 13–16 (2013).
[Crossref]

Bennetts, S.

Bernier, M.

Biswas, K.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Brown, C. T. A.

Calvez, S.

Calveza, L.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Caron, N.

Carter, A.

Chen, D.

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho³⁺/Er³⁺-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
[Crossref] [PubMed]

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer,” J. Appl. Phys. 106(11), 113102 (2009).
[Crossref]

Chen, F.

Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
[Crossref]

T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
[Crossref]

Chen, G.

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer,” J. Appl. Phys. 106(11), 113102 (2009).
[Crossref]

Cheng, J.

Dai, S.

X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
[Crossref]

Davidson, A.

Dawson, M. D.

Dickinson, M. R.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-μm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Duan, R.-G.

R.-G. Duan, K.-M. Liang, and S.-R. Gu, “A new criterion for the stability of glasses,” J. Eur. Ceram. Soc. 18(8), 1131–1137 (1998).
[Crossref]

Dunn, B.

J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
[Crossref]

Fan, J.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Fan, Y.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Faucher, D.

Florez, A.

A. Florez, S. L. Oliveira, M. Flórez, L. A. Gómez, and L. A. O. Nunes, “Spectroscopic characterization of Ho3+ ion-doped fluoride glass,” J. Alloys Compd. 418(1-2), 238–242 (2006).
[Crossref]

Flórez, M.

A. Florez, S. L. Oliveira, M. Flórez, L. A. Gómez, and L. A. O. Nunes, “Spectroscopic characterization of Ho3+ ion-doped fluoride glass,” J. Alloys Compd. 418(1-2), 238–242 (2006).
[Crossref]

Fusari, F.

Gao, G.

Y. Guo, G. Gao, M. Li, L. Hu, and J. Zhang, “Er3+-doped fluoro-tellurite glass: A new choice for 2.7μm lasers,” Mater. Lett. 80, 56–58 (2012).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Gómez, L. A.

A. Florez, S. L. Oliveira, M. Flórez, L. A. Gómez, and L. A. O. Nunes, “Spectroscopic characterization of Ho3+ ion-doped fluoride glass,” J. Alloys Compd. 418(1-2), 238–242 (2006).
[Crossref]

Gu, S.-R.

R.-G. Duan, K.-M. Liang, and S.-R. Gu, “A new criterion for the stability of glasses,” J. Eur. Ceram. Soc. 18(8), 1131–1137 (1998).
[Crossref]

Guo, Y.

Gupta, J. A.

Haub, J.

Hemming, A.

Hu, L.

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[Crossref] [PubMed]

F. Huang, X. Liu, Y. Zhang, L. Hu, and D. Chen, “Enhanced 2.7- and 2.84-μm emissions from diode-pumped Ho³⁺/Er³⁺-doped fluoride glass,” Opt. Lett. 39(20), 5917–5920 (2014).
[Crossref] [PubMed]

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced ~2μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics,” J. Non-Cryst. Solids 361, 13–16 (2013).
[Crossref]

Y. Guo, G. Gao, M. Li, L. Hu, and J. Zhang, “Er3+-doped fluoro-tellurite glass: A new choice for 2.7μm lasers,” Mater. Lett. 80, 56–58 (2012).
[Crossref]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett. 37(2), 268–270 (2012).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

R. Xu, J. Pan, L. Hu, and J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).

Hu, L. L.

J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Huang, F.

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Jackson, S. D.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 μm,” Electron. Lett. 47(19), 1089 (2011).
[Crossref]

S. D. Jackson, “8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
[Crossref]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-μm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Jha, A.

L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2 μm glass lasers,” Opt. Express 18(21), 22090–22098 (2010).
[Crossref] [PubMed]

Jing, X.

Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
[Crossref]

T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
[Crossref]

Jose, G.

Judd, B.

B. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

King, T. A.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-μm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Lagatsky, A. A.

Li, J.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 μm,” Electron. Lett. 47(19), 1089 (2011).
[Crossref]

Li, K.

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced ~2μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics,” J. Non-Cryst. Solids 361, 13–16 (2013).
[Crossref]

Li, K. F.

J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Li, M.

Y. Guo, G. Gao, M. Li, L. Hu, and J. Zhang, “Er3+-doped fluoro-tellurite glass: A new choice for 2.7μm lasers,” Mater. Lett. 80, 56–58 (2012).
[Crossref]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett. 37(2), 268–270 (2012).
[Crossref] [PubMed]

Li, R.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 μm,” Electron. Lett. 47(19), 1089 (2011).
[Crossref]

Li, X.

X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
[Crossref]

Liang, K.-M.

R.-G. Duan, K.-M. Liang, and S.-R. Gu, “A new criterion for the stability of glasses,” J. Eur. Ceram. Soc. 18(8), 1131–1137 (1998).
[Crossref]

Liu, X.

Lu, L.

X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
[Crossref]

Nie, Q.

X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
[Crossref]

Nunes, L. A. O.

A. Florez, S. L. Oliveira, M. Flórez, L. A. Gómez, and L. A. O. Nunes, “Spectroscopic characterization of Ho3+ ion-doped fluoride glass,” J. Alloys Compd. 418(1-2), 238–242 (2006).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys. 37(3), 511 (1962).
[Crossref]

Oliveira, S. L.

A. Florez, S. L. Oliveira, M. Flórez, L. A. Gómez, and L. A. O. Nunes, “Spectroscopic characterization of Ho3+ ion-doped fluoride glass,” J. Alloys Compd. 418(1-2), 238–242 (2006).
[Crossref]

Pan, J.

R. Xu, J. Pan, L. Hu, and J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).

Pan, J. J.

J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Peng, Y. P.

Pierce, M. C.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-μm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Qian, Q.

J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
[Crossref]

Qiu, J.

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer,” J. Appl. Phys. 106(11), 113102 (2009).
[Crossref]

Richards, B.

L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

Sen, R.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Shterengas, L.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 μm,” Electron. Lett. 47(19), 1089 (2011).
[Crossref]

Sibbett, W.

Simakov, N.

Sloan, P.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-μm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Sontakke, A. D.

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Tao, L.

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced ~2μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics,” J. Non-Cryst. Solids 361, 13–16 (2013).
[Crossref]

L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

Tian, Y.

T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
[Crossref]

Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
[Crossref]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Tsang, Y. H.

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced ~2μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics,” J. Non-Cryst. Solids 361, 13–16 (2013).
[Crossref]

L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

Vallée, R.

van Dijk, J. M. F.

J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983).
[Crossref]

Wang, F.

T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
[Crossref]

Wei, T.

Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
[Crossref]

T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
[Crossref]

Xu, R.

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

R. Xu, J. Pan, L. Hu, and J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).

Xu, R. R.

J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Xu, S.

Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
[Crossref]

T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
[Crossref]

Xu, T.

X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
[Crossref]

Yang, Y.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Yuan, J.

J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
[Crossref]

Zhang, G.

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer,” J. Appl. Phys. 106(11), 113102 (2009).
[Crossref]

Zhang, J.

Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
[Crossref]

Y. P. Peng, Y. Guo, J. Zhang, and L. Zhang, “Ho³⁺Yb³⁺-codoped germanate-tellurite glasses for 2.0 μm emission performance,” Appl. Opt. 53(8), 1564–1569 (2014).
[Crossref] [PubMed]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett. 37(2), 268–270 (2012).
[Crossref] [PubMed]

Y. Guo, G. Gao, M. Li, L. Hu, and J. Zhang, “Er3+-doped fluoro-tellurite glass: A new choice for 2.7μm lasers,” Mater. Lett. 80, 56–58 (2012).
[Crossref]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

R. Xu, J. Pan, L. Hu, and J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).

Zhang, J. J.

J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

Zhang, J.-P.

J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
[Crossref]

Zhang, L.

Y. P. Peng, Y. Guo, J. Zhang, and L. Zhang, “Ho³⁺Yb³⁺-codoped germanate-tellurite glasses for 2.0 μm emission performance,” Appl. Opt. 53(8), 1564–1569 (2014).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Zhang, Q.

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer,” J. Appl. Phys. 106(11), 113102 (2009).
[Crossref]

Zhang, Q.-Y.

J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
[Crossref]

Zhang, W.-J.

J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
[Crossref]

Zhang, X.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
[Crossref]

Zhang, Y.

Zhou, B.

L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

Appl. Opt. (1)

C. R. Phys. (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Electron. Lett. (2)

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 μm,” Electron. Lett. 47(19), 1089 (2011).
[Crossref]

S. D. Jackson, “8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
[Crossref]

J. Alloys Compd. (2)

A. Florez, S. L. Oliveira, M. Flórez, L. A. Gómez, and L. A. O. Nunes, “Spectroscopic characterization of Ho3+ ion-doped fluoride glass,” J. Alloys Compd. 418(1-2), 238–242 (2006).
[Crossref]

X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, “Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses,” J. Alloys Compd. 454(1-2), 510–514 (2008).
[Crossref]

J. Am. Ceram. Soc. (1)

J.-P. Zhang, W.-J. Zhang, J. Yuan, Q. Qian, Q.-Y. Zhang, and B. Dunn, “Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass-Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+Ions,” J. Am. Ceram. Soc. 96(12), 3836–3841 (2013).
[Crossref]

J. Appl. Phys. (3)

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Q. Zhang, G. Chen, G. Zhang, J. Qiu, and D. Chen, “Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer,” J. Appl. Phys. 106(11), 113102 (2009).
[Crossref]

R. Xu, J. Pan, L. Hu, and J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys. 37(3), 511 (1962).
[Crossref]

J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983).
[Crossref]

J. Eur. Ceram. Soc. (1)

R.-G. Duan, K.-M. Liang, and S.-R. Gu, “A new criterion for the stability of glasses,” J. Eur. Ceram. Soc. 18(8), 1131–1137 (1998).
[Crossref]

J. Non-Cryst. Solids (3)

G. Bai, L. Tao, K. Li, L. Hu, and Y. H. Tsang, “Enhanced ~2μm and upconversion emission from Ho–Yb codoped oxyfluoride glass ceramics,” J. Non-Cryst. Solids 361, 13–16 (2013).
[Crossref]

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

L. Tao, Y. H. Tsang, B. Zhou, B. Richards, and A. Jha, “Enhanced 2.0μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass,” J. Non-Cryst. Solids 358(14), 1644–1648 (2012).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, and S. Xu, “Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 311–318 (2014).
[Crossref]

Lasers Surg. Med. (1)

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-μm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Mater. Lett. (1)

Y. Guo, G. Gao, M. Li, L. Hu, and J. Zhang, “Er3+-doped fluoro-tellurite glass: A new choice for 2.7μm lasers,” Mater. Lett. 80, 56–58 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (3)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

J. J. Pan, R. R. Xu, Y. Tian, K. F. Li, L. L. Hu, and J. J. Zhang, “2.0 mu m Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+-Ho3+ ions,” Opt. Mater. 32(11), 1451–1455 (2010).
[Crossref]

T. Wei, F. Chen, X. Jing, Y. Tian, F. Wang, and S. Xu, “Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD,” Opt. Mater. 36(8), 1350–1356 (2014).
[Crossref]

Phys. Rev. (1)

B. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

K. Biswas, A. D. Sontakke, R. Sen, and K. Annapurna, “Enhanced 2 μm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3-GeO2-ZnO glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 301–308 (2013).
[Crossref] [PubMed]

Other (2)

W. Qing, G. Jihong, J. Zhuo, L. Tao, and J. Shibin, “Mode-locked Tm-Ho fiber laser with a Sb-based SESAM,” in Lasers and Electro-Optics (CLEO), 2011 Conference on(2011), pp. 1–2.

T. Hu, D. D. Hudson, B. J. Eggleton, and S. D. Jackson, “A highly-efficient, 2.9 μm Q-switched Ho/Pr co-doped fiber laser,” in Lasers and Electro-Optics (CLEO), 2012 Conference on( 2012), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fig. 1(a) DSC curve for x = 0.17 Ho3+/Yb3+-codoped germanate glass with heating rate of 20K/min. (b) ln(Tp2/ϕ) vs 1000/Tp graph for germanate glasses codoped with HO3+/Yb3+. The solid line is the fit using the Kissinger method to determine the activation energy.
Fig. 2
Fig. 2 Transmittance spectra and FTIR transmittance spectra (inset) of Ho3+/Yb3+ codoped germanate glass(x = 0.17).
Fig. 3
Fig. 3 Absorption spectra of Ho3+ singly doped, Yb3+ singly doped and Ho3+/Yb3+ codoped germanate glass.
Fig. 4
Fig. 4 2 μm fluorescence spectra of Ho3+/Yb3+ codoped germanate glasses pumped by 980 nm LD and emission cross section of x = 0.17 sample (inset).
Fig. 5
Fig. 5 The 2μm emission lifetime curve of prepared sample (x = 0.17).
Fig. 6
Fig. 6 (a) Energy level diagram and energy transfer map pumped by 980 nm LD in Ho3+/Yb3+ activated germanate glass. (b) The 1 μm emission lifetime curve of prepared sample (x = 0.17).

Tables (1)

Tables Icon

Table 1 The lifetime of 1 μm emission and energy transfer coefficient in prepared samples.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ΔW= W 1 W 2 W 2 ×100%
ln( T p 2 ϕ )= E a R T p +constant
[O H ](ppm)=(1000/d)log( T b /T)
σ em = λ 4 A rad 8πc n 2 × λI(λ) λI(λ)dλ
d n 1 dt = n 3 τ 3 + n 2 τ 2
d n 2 dt = W 32 n 3 n 2 τ 2
d n 3 dt = C D3 n D n 1 n 3 τ 3 W 32 n 3
d n D dt =R n D0 C D3 n D n 1 n D τ D
d n D0 dt =R n D0 + n D τ D
n D0 + n D = n Yb
n 1 + n 2 + n 3 = n Ho
n D (t)= n D(0) exp(( C D3 n H0 + τ D 1 )t)

Metrics