Abstract

We describe a technique for the quick and simple assessment of doped optical materials for use as laser gain media. To demonstrate this technique, referred to as Rapid Thermo-Optical Assessment (RTOA), we analyze a set of ceramic and crystalline Yb3+:YAG samples. RTOA is based on Shack-Hartmann wavefront sensing and thermal lensing to evaluate the media’s thermal response, giving a relative overall quality assessment of the material. The technique is also broadly applicable to optical media considered for high power or thermal loading conditions, and useful for the refinement of fabrication methods.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics

Ryo Yasuhara, Hiroaki Furuse, Akifumi Iwamoto, Junji Kawanaka, and Takagimi Yanagitani
Opt. Express 20(28) 29531-29539 (2012)

Overview of transparent optical ceramics for high-energy lasers at NRL

Woohong Kim, Guillermo Villalobos, Colin Baker, Jesse Frantz, Brandon Shaw, Shyam Bayya, Steven Bowman, Bryan Sadowski, Michael Hunt, Benjamin Rock, Ishwar Aggarwal, and Jasbinder Sanghera
Appl. Opt. 54(31) F210-F221 (2015)

3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment

P. Ferrara, M. Ciofini, L. Esposito, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, G. Toci, M. Vannini, and L. A. Gizzi
Opt. Express 22(5) 5375-5386 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. W. AlShaer, L. Li, and A. Mistry, “The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture,” Opt. Laser Technol. 64, 162–171 (2014).
    [Crossref]
  2. G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012).
    [Crossref]
  3. Office of Naval Research, “All Systems Go: Navy's Laser Weapon Ready for Summer Deployment,” http://www.navy.mil/submit/display.asp?story_id=80172 .
  4. J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
    [Crossref]
  5. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  6. A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices, W. A. Clarkson, N. Hodgson, and R. K. Shori, eds. (SPIE, 2009), pp. 71930D.
  7. R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 µm absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
    [Crossref]
  8. F. Zhuang, B. Jungbluth, B. Gronloh, H. D. Hoffmann, and G. Zhang, “Dual-wavelength, continuous-wave Yb:YAG laser for high-resolution photothermal common-path interferometry,” Appl. Opt. 52(21), 5171–5177 (2013).
    [Crossref] [PubMed]
  9. N. J. Dovichi and J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51(6), 728–731 (1979).
    [Crossref]
  10. S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
    [Crossref]
  11. S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
    [Crossref]
  12. C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
    [Crossref]
  13. C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 µm,” Opt. Express 16(9), 6317–6323 (2008).
    [Crossref] [PubMed]
  14. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorge, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
    [Crossref]
  15. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3(1), 102–114 (1986).
    [Crossref]
  16. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
    [Crossref]
  17. D. P. Devor, L. G. DeShazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25(8), 1863–1873 (1989).
    [Crossref]
  18. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).
  19. C. C. C. Willis, J. Bradford, L. Shah, and M. Richardson, “Measurement of Wavefront Distortions Resulting from Incidence of High-Power 2 µm Laser Light,” in Solid State and Diode Laser Technology Review (Directed Energy Professional Society, 2011).
  20. C. C. C. Willis, J. D. Bradford, E. Maddox, L. Shah, and M. Richardson, “Thermo-optic quality assessment of doped optical ceramics,” in Solid State Lasers XXII: Technology and Devices (SPIE, 2013), pp. 85990.
  21. A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  22. K. A. Appiagyei, G. L. Messing, and J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics,” Ceram. Int. 34(5), 1309–1313 (2008).
    [Crossref]
  23. A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
    [Crossref]
  24. J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009).
    [Crossref]
  25. J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
    [Crossref]
  26. W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
    [Crossref]
  27. S. R. Rotman, C. Warde, H. L. Tuller, and J. Haggerty, “Defect‐property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum–yttrium iron garnet solid solutions,” J. Appl. Phys. 66(7), 3207–3210 (1989).
    [Crossref]
  28. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
    [Crossref]
  29. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  30. W. F. Krupke, “Ytterbium solid-state lasers. The first decade,” IEEE J. Sel. Top. Quant. 6(6), 1287–1296 (2000).
    [Crossref]
  31. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  32. G. Ranganath and S. Ramaseshan, “Photoelasticity in polycrystalline aggregates,” Pramana 1(2), 78–87 (1973).
    [Crossref]

2014 (1)

A. W. AlShaer, L. Li, and A. Mistry, “The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture,” Opt. Laser Technol. 64, 162–171 (2014).
[Crossref]

2013 (1)

2012 (3)

G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012).
[Crossref]

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 µm absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

2011 (2)

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorge, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
[Crossref]

2009 (1)

J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009).
[Crossref]

2008 (3)

A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

K. A. Appiagyei, G. L. Messing, and J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics,” Ceram. Int. 34(5), 1309–1313 (2008).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 µm,” Opt. Express 16(9), 6317–6323 (2008).
[Crossref] [PubMed]

2007 (1)

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

2006 (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

2005 (1)

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

2004 (3)

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).

2002 (1)

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

2001 (1)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers. The first decade,” IEEE J. Sel. Top. Quant. 6(6), 1287–1296 (2000).
[Crossref]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

1992 (1)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

1989 (2)

D. P. Devor, L. G. DeShazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25(8), 1863–1873 (1989).
[Crossref]

S. R. Rotman, C. Warde, H. L. Tuller, and J. Haggerty, “Defect‐property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum–yttrium iron garnet solid solutions,” J. Appl. Phys. 66(7), 3207–3210 (1989).
[Crossref]

1986 (1)

1979 (1)

N. J. Dovichi and J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51(6), 728–731 (1979).
[Crossref]

1973 (1)

G. Ranganath and S. Ramaseshan, “Photoelasticity in polycrystalline aggregates,” Pramana 1(2), 78–87 (1973).
[Crossref]

Aggarwal, I.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

AlShaer, A. W.

A. W. AlShaer, L. Li, and A. Mistry, “The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture,” Opt. Laser Technol. 64, 162–171 (2014).
[Crossref]

An, L.

J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009).
[Crossref]

Andrade, A. A.

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

Appiagyei, K. A.

K. A. Appiagyei, G. L. Messing, and J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics,” Ceram. Int. 34(5), 1309–1313 (2008).
[Crossref]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Baesso, M. L.

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

Baker, C.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

Bausá, L. E.

Bayya, S.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Boulon, G.

G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012).
[Crossref]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).

Byer, R. L.

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 µm absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

Caird, J. A.

Camy, P.

Catunda, T.

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 µm,” Opt. Express 16(9), 6317–6323 (2008).
[Crossref] [PubMed]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

Courjaud, A.

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

DeSandre, L.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

DeShazer, L. G.

D. P. Devor, L. G. DeShazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25(8), 1863–1873 (1989).
[Crossref]

Devor, D. P.

D. P. Devor, L. G. DeShazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25(8), 1863–1873 (1989).
[Crossref]

Doualan, J. L.

Dovichi, N. J.

N. J. Dovichi and J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51(6), 728–731 (1979).
[Crossref]

Druon, F.

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorge, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
[Crossref]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

Dubinskiy, M.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Dumm, J. Q.

K. A. Appiagyei, G. L. Messing, and J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics,” Ceram. Int. 34(5), 1309–1313 (2008).
[Crossref]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Frantz, J.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Fukuda, T.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).

García-Solé, J.

Gaume, R.

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 µm absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

Georges, P.

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorge, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
[Crossref]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

Goutaudier, C.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).

Gronloh, B.

Guyot, Y.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).

Haggerty, J.

S. R. Rotman, C. Warde, H. L. Tuller, and J. Haggerty, “Defect‐property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum–yttrium iron garnet solid solutions,” J. Appl. Phys. 66(7), 3207–3210 (1989).
[Crossref]

Harris, J. M.

N. J. Dovichi and J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51(6), 728–731 (1979).
[Crossref]

He, Y.

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 µm absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

Hoffmann, H. D.

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Hunt, M.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Ito, M.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).

Jacinto, C.

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 µm,” Opt. Express 16(9), 6317–6323 (2008).
[Crossref] [PubMed]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

Jaque, D.

Jungbluth, B.

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Kaminskii, A. A.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Kim, W.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Krupke, W. F.

Kung, F.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Lamar, C.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Langston, P.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Lebbou, K.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).

Li, F.

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

Li, L.

A. W. AlShaer, L. Li, and A. Mistry, “The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture,” Opt. Laser Technol. 64, 162–171 (2014).
[Crossref]

Lima, S. M.

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

Liu, M.

J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009).
[Crossref]

Lu, J.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Lu, T.

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

Lu, Z.

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

Lucas-Leclin, G.

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

Ma, B.

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

Marion, J. E.

Markosyan, A.

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 µm absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

Messing, G. L.

K. A. Appiagyei, G. L. Messing, and J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics,” Ceram. Int. 34(5), 1309–1313 (2008).
[Crossref]

Miklos, R.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Mistry, A.

A. W. AlShaer, L. Li, and A. Mistry, “The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture,” Opt. Laser Technol. 64, 162–171 (2014).
[Crossref]

Moncorge, R.

Mottay, E.

Musha, M.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Nakayama, S.

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Ogloza, A.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Papadopoulos, D. N.

Pastor, R. C.

D. P. Devor, L. G. DeShazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25(8), 1863–1873 (1989).
[Crossref]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Pellegrina, A.

Peplinski, S.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Qi, J.

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

Ramaseshan, S.

G. Ranganath and S. Ramaseshan, “Photoelasticity in polycrystalline aggregates,” Pramana 1(2), 78–87 (1973).
[Crossref]

Ranganath, G.

G. Ranganath and S. Ramaseshan, “Photoelasticity in polycrystalline aggregates,” Pramana 1(2), 78–87 (1973).
[Crossref]

Reicher, D.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Ricaud, S.

Rotman, S. R.

S. R. Rotman, C. Warde, H. L. Tuller, and J. Haggerty, “Defect‐property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum–yttrium iron garnet solid solutions,” J. Appl. Phys. 66(7), 3207–3210 (1989).
[Crossref]

Sadowski, B.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Sanghera, J.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Shaw, B.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Shimai, S.

J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009).
[Crossref]

Shinn, M. D.

Skirawa, A.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Stokowski, S. E.

Takaichi, K.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Tuller, H. L.

S. R. Rotman, C. Warde, H. L. Tuller, and J. Haggerty, “Defect‐property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum–yttrium iron garnet solid solutions,” J. Appl. Phys. 66(7), 3207–3210 (1989).
[Crossref]

Ueda, K.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Umematsu, T.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Varmette, P.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Villalobos, G.

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

Wang, S.

J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009).
[Crossref]

Warde, C.

S. R. Rotman, C. Warde, H. L. Tuller, and J. Haggerty, “Defect‐property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum–yttrium iron garnet solid solutions,” J. Appl. Phys. 66(7), 3207–3210 (1989).
[Crossref]

Wei, N.

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

Yagi, H.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Yanagitami, T.

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Yoda, T.

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Zhang, G.

Zhang, J.

J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009).
[Crossref]

Zhang, W.

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

Zhuang, F.

Anal. Chem. (1)

N. J. Dovichi and J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51(6), 728–731 (1979).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005).
[Crossref]

Ceram. Int. (1)

K. A. Appiagyei, G. L. Messing, and J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics,” Ceram. Int. 34(5), 1309–1313 (2008).
[Crossref]

IEEE J. Quantum Electron. (5)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

D. P. Devor, L. G. DeShazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25(8), 1863–1873 (1989).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[Crossref]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

W. F. Krupke, “Ytterbium solid-state lasers. The first decade,” IEEE J. Sel. Top. Quant. 6(6), 1287–1296 (2000).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

J. Appl. Phys. (2)

R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 µm absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012).
[Crossref]

S. R. Rotman, C. Warde, H. L. Tuller, and J. Haggerty, “Defect‐property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum–yttrium iron garnet solid solutions,” J. Appl. Phys. 66(7), 3207–3210 (1989).
[Crossref]

J. Eur. Ceram. Soc. (1)

J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys: Condens. Mat. (1)

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004).

Jpn. J. Appl. Phys. (1)

J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002).
[Crossref]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

A. W. AlShaer, L. Li, and A. Mistry, “The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture,” Opt. Laser Technol. 64, 162–171 (2014).
[Crossref]

Opt. Mater. (4)

G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012).
[Crossref]

J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011).
[Crossref]

W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012).
[Crossref]

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Opt. Mater. Express (1)

Pramana (1)

G. Ranganath and S. Ramaseshan, “Photoelasticity in polycrystalline aggregates,” Pramana 1(2), 78–87 (1973).
[Crossref]

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Other (5)

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

C. C. C. Willis, J. Bradford, L. Shah, and M. Richardson, “Measurement of Wavefront Distortions Resulting from Incidence of High-Power 2 µm Laser Light,” in Solid State and Diode Laser Technology Review (Directed Energy Professional Society, 2011).

C. C. C. Willis, J. D. Bradford, E. Maddox, L. Shah, and M. Richardson, “Thermo-optic quality assessment of doped optical ceramics,” in Solid State Lasers XXII: Technology and Devices (SPIE, 2013), pp. 85990.

Office of Naval Research, “All Systems Go: Navy's Laser Weapon Ready for Summer Deployment,” http://www.navy.mil/submit/display.asp?story_id=80172 .

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices, W. A. Clarkson, N. Hodgson, and R. K. Shori, eds. (SPIE, 2009), pp. 71930D.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) Water-cooled sample mount, b) diagram of RTOA measurement setup.
Fig. 2
Fig. 2 Example of thermal distortion induced by optical pumping of a sample.
Fig. 3
Fig. 3 Dioptric power, corrected for sample length and dopant concentration, of the induced thermal lens as a function of the incident pump power for all samples.
Fig. 4
Fig. 4 Extinction feature near 255 nm demonstrates a significant amount of variation between samples.
Fig. 5
Fig. 5 Representative examples of deviation between experimental sample behavior and thermal model prediction.
Fig. 6
Fig. 6 Model deviation, Δ(D/W), plotted against corrected experimental distortion, D/W, shows a strong positive correlation.
Fig. 7
Fig. 7 Relationship between extinction coefficient at 255 nm and sample thermal distortion.

Tables (2)

Tables Icon

Table 1 List of samples tested

Tables Icon

Table 2 Photoelastic and thermo-optic coefficients for polycrystalline YAG

Metrics