Abstract

Transparent and colorless CeO2-activated borogermanate glasses with about 5.60 g/cm3 were successfully synthesized by a melt-quenching method in air atmosphere. Both the optical transmittance and X-ray absorption near edge spectroscopy (XANES) spectra confirm that Ce4+ can be effectively reduced to its trivalent state, i.e. Ce3+ ions, by minor quantity of Si3N4 addition as a strong reducing agent. The luminescence characteristics excited by both ultraviolet and X-ray light were studied and the optimal content of Si3N4 was determined. The developed dense Ce3+-activated borogermanate glasses is featured with a broad emission band centered at 430 nm and a decay time of about 30 ns, which will be a promising candidate to scintillating crystals and ceramics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced Ce3+ emission in B2O3-GeO2-Gd2O3 scintillating glasses induced by melting temperature

Xin-Yuan Sun, Liang-Wu Lin, Yun-Tao Wu, Pan Gao, and Zhuo-Hao Xiao
Opt. Mater. Express 5(4) 920-925 (2015)

Eu3+ doped transparent germanate glass ceramic scintillators containing LaF3 nanocrystals for X-ray detection

JingTao Zhao, LiHui Huang, ShiLong Zhao, and ShiQing Xu
Opt. Mater. Express 9(2) 576-584 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
    [Crossref]
  2. J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activeated heavy scintillating glasses,” J. Lumin. 128(1), 99–104 (2008).
    [Crossref]
  3. G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
    [Crossref]
  4. W. Dai, H. Marcacci, B. Lynch, H. Menkara, B. Wagner, Z. Kang, C. Wang, Y. Diawara, and R. Engels, “Rare-earth activated glass and glass-ceramic for neutron detection,” MRS Proc. 147,1–6(2012).
    [Crossref]
  5. W. Zhou, S. W. Martin, D. Schwellenbach, and J. Hauptman, “New high-density fluoride glasses doped with CeF3,” J. Non-Cryst. Solids 184, 84–92 (1995).
    [Crossref]
  6. S. F. Shaukat, K. J. McKinlay, P. S. Flower, P. R. Hobson, and J. M. Parker, “Optical and physical characteristics of HBLAN fluoride glasses containing cerium,” J. Non-Cryst. Solids 244(2–3), 197–204 (1999).
    [Crossref]
  7. C. Jiang, P. Deng, J. Zhang, and F. Gan, “Radioluminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass,” Phys. Lett. A 323(3–4), 323–328 (2004).
    [Crossref]
  8. W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
    [Crossref]
  9. Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
    [Crossref]
  10. F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
    [Crossref]
  11. M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
    [Crossref]
  12. Q. Jiao, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Phenomenon of Eu3+ self-reduction induced by B2O3 configuration structure in sodiumborate glasses,” J. Appl. Phys. 114(4), 043107 (2013).
    [Crossref]
  13. S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
    [Crossref]
  14. X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
    [Crossref]
  15. D. de Graaf, H. T. Hintzen, and G. de With, “The influence of the composition on the luminescence of Ce(III)–Ln–Si–Al–O–N glasses (Ln=Sc, Y, La, Gd),” J. Lumin. 104(1–2), 131–136 (2003).
    [Crossref]
  16. X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
    [Crossref]
  17. E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikost, “Vibrational Spectra of magnesium-sodium-borate glasses II: Raman and mid-Infrared investigation of the network structure,” J. Phys. Chem. 91(5), 1073–1079 (1987).
    [Crossref]
  18. I. N. Chakraborty and R. A. Condrate., “Vibrational spectra of B2O3-GeO2-SiO2 glasses,” J. Mater. Sci. Lett. 5(3), 361–364 (1986).
    [Crossref]
  19. G. Ren, L. Qin, S. Lu, and H. Li, “Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions,” Nucl. Instru. Meth. A 531(3), 560–565 (2004).
    [Crossref]
  20. T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
    [Crossref]
  21. A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
    [Crossref] [PubMed]
  22. Y. Wu, J. Luo, M. Nikl, and G. Ren, “Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multimcomponentgarnets: An X-ray absorption near edge spectroscopy study,” APL Mater. 2(1), 012101 (2014).
    [Crossref]
  23. Y. Zhu, S. Ouyang, S. Gao, and W. Teng, “Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass,” J. Wuhan Univ. Technol. 24(5), 815–818 (2009).
    [Crossref]
  24. A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
    [Crossref]
  25. G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
    [Crossref]

2014 (3)

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Y. Wu, J. Luo, M. Nikl, and G. Ren, “Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multimcomponentgarnets: An X-ray absorption near edge spectroscopy study,” APL Mater. 2(1), 012101 (2014).
[Crossref]

2013 (3)

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Q. Jiao, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Phenomenon of Eu3+ self-reduction induced by B2O3 configuration structure in sodiumborate glasses,” J. Appl. Phys. 114(4), 043107 (2013).
[Crossref]

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
[Crossref]

2011 (1)

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

2010 (1)

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

2009 (1)

Y. Zhu, S. Ouyang, S. Gao, and W. Teng, “Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass,” J. Wuhan Univ. Technol. 24(5), 815–818 (2009).
[Crossref]

2008 (2)

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activeated heavy scintillating glasses,” J. Lumin. 128(1), 99–104 (2008).
[Crossref]

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

2006 (1)

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

2005 (1)

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

2004 (2)

G. Ren, L. Qin, S. Lu, and H. Li, “Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions,” Nucl. Instru. Meth. A 531(3), 560–565 (2004).
[Crossref]

C. Jiang, P. Deng, J. Zhang, and F. Gan, “Radioluminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass,” Phys. Lett. A 323(3–4), 323–328 (2004).
[Crossref]

2003 (2)

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[Crossref]

D. de Graaf, H. T. Hintzen, and G. de With, “The influence of the composition on the luminescence of Ce(III)–Ln–Si–Al–O–N glasses (Ln=Sc, Y, La, Gd),” J. Lumin. 104(1–2), 131–136 (2003).
[Crossref]

2000 (1)

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

1999 (1)

S. F. Shaukat, K. J. McKinlay, P. S. Flower, P. R. Hobson, and J. M. Parker, “Optical and physical characteristics of HBLAN fluoride glasses containing cerium,” J. Non-Cryst. Solids 244(2–3), 197–204 (1999).
[Crossref]

1995 (1)

W. Zhou, S. W. Martin, D. Schwellenbach, and J. Hauptman, “New high-density fluoride glasses doped with CeF3,” J. Non-Cryst. Solids 184, 84–92 (1995).
[Crossref]

1994 (1)

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

1987 (2)

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikost, “Vibrational Spectra of magnesium-sodium-borate glasses II: Raman and mid-Infrared investigation of the network structure,” J. Phys. Chem. 91(5), 1073–1079 (1987).
[Crossref]

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

1986 (1)

I. N. Chakraborty and R. A. Condrate., “Vibrational spectra of B2O3-GeO2-SiO2 glasses,” J. Mater. Sci. Lett. 5(3), 361–364 (1986).
[Crossref]

Baccaro, S.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Baraldi, A.

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Beitlerova, A.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Belsky, A.

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

Berkowski, M.

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

Bettinelli, M.

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

Bianconi, A.

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

Capelletti, R.

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Chakraborty, I. N.

I. N. Chakraborty and R. A. Condrate., “Vibrational spectra of B2O3-GeO2-SiO2 glasses,” J. Mater. Sci. Lett. 5(3), 361–364 (1986).
[Crossref]

Chen, D.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Chen, S.

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Chewpraditkul, W.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Chiodini, N.

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Chryssikost, G. D.

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikost, “Vibrational Spectra of magnesium-sodium-borate glasses II: Raman and mid-Infrared investigation of the network structure,” J. Phys. Chem. 91(5), 1073–1079 (1987).
[Crossref]

Condrate, R. A.

I. N. Chakraborty and R. A. Condrate., “Vibrational spectra of B2O3-GeO2-SiO2 glasses,” J. Mater. Sci. Lett. 5(3), 361–364 (1986).
[Crossref]

Dall’Igna, R.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

de Graaf, D.

D. de Graaf, H. T. Hintzen, and G. de With, “The influence of the composition on the luminescence of Ce(III)–Ln–Si–Al–O–N glasses (Ln=Sc, Y, La, Gd),” J. Lumin. 104(1–2), 131–136 (2003).
[Crossref]

de With, G.

D. de Graaf, H. T. Hintzen, and G. de With, “The influence of the composition on the luminescence of Ce(III)–Ln–Si–Al–O–N glasses (Ln=Sc, Y, La, Gd),” J. Lumin. 104(1–2), 131–136 (2003).
[Crossref]

Deng, P.

C. Jiang, P. Deng, J. Zhang, and F. Gan, “Radioluminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass,” Phys. Lett. A 323(3–4), 323–328 (2004).
[Crossref]

Dexpert, H.

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

Di Martino, D.

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Dominiak-Dzik, G.

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

Domukhovski, V.

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

Dujardin, C.

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

Fabeni, P.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Fasoli, M.

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Flower, P. S.

S. F. Shaukat, K. J. McKinlay, P. S. Flower, P. R. Hobson, and J. M. Parker, “Optical and physical characteristics of HBLAN fluoride glasses containing cerium,” J. Non-Cryst. Solids 244(2–3), 197–204 (1999).
[Crossref]

Fu, J.

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activeated heavy scintillating glasses,” J. Lumin. 128(1), 99–104 (2008).
[Crossref]

Gan, F.

C. Jiang, P. Deng, J. Zhang, and F. Gan, “Radioluminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass,” Phys. Lett. A 323(3–4), 323–328 (2004).
[Crossref]

Gao, P.

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Gao, S.

Y. Zhu, S. Ouyang, S. Gao, and W. Teng, “Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass,” J. Wuhan Univ. Technol. 24(5), 815–818 (2009).
[Crossref]

Gu, M.

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Gzowacki, M.

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

Han, G.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Hauptman, J.

W. Zhou, S. W. Martin, D. Schwellenbach, and J. Hauptman, “New high-density fluoride glasses doped with CeF3,” J. Non-Cryst. Solids 184, 84–92 (1995).
[Crossref]

He, X.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Hintzen, H. T.

D. de Graaf, H. T. Hintzen, and G. de With, “The influence of the composition on the luminescence of Ce(III)–Ln–Si–Al–O–N glasses (Ln=Sc, Y, La, Gd),” J. Lumin. 104(1–2), 131–136 (2003).
[Crossref]

Hobson, P. R.

S. F. Shaukat, K. J. McKinlay, P. S. Flower, P. R. Hobson, and J. M. Parker, “Optical and physical characteristics of HBLAN fluoride glasses containing cerium,” J. Non-Cryst. Solids 244(2–3), 197–204 (1999).
[Crossref]

Hong, G.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[Crossref]

Huang, S.

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Jiang, C.

C. Jiang, P. Deng, J. Zhang, and F. Gan, “Radioluminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass,” Phys. Lett. A 323(3–4), 323–328 (2004).
[Crossref]

Jiang, D.

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Jiang, H.

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
[Crossref]

Jiao, Q.

Q. Jiao, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Phenomenon of Eu3+ self-reduction induced by B2O3 configuration structure in sodiumborate glasses,” J. Appl. Phys. 114(4), 043107 (2013).
[Crossref]

Jin, J.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Jo, T.

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

Kamitsos, E. I.

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikost, “Vibrational Spectra of magnesium-sodium-borate glasses II: Raman and mid-Infrared investigation of the network structure,” J. Phys. Chem. 91(5), 1073–1079 (1987).
[Crossref]

Karakassides, M. A.

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikost, “Vibrational Spectra of magnesium-sodium-borate glasses II: Raman and mid-Infrared investigation of the network structure,” J. Phys. Chem. 91(5), 1073–1079 (1987).
[Crossref]

Karnatak, R.

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

Kobayashi, M.

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activeated heavy scintillating glasses,” J. Lumin. 128(1), 99–104 (2008).
[Crossref]

Kotani, A.

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

Kucerkova, R.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Li, H.

G. Ren, L. Qin, S. Lu, and H. Li, “Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions,” Nucl. Instru. Meth. A 531(3), 560–565 (2004).
[Crossref]

Lisiecki, R.

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

Liu, S.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Locardi, B.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

Lu, S.

G. Ren, L. Qin, S. Lu, and H. Li, “Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions,” Nucl. Instru. Meth. A 531(3), 560–565 (2004).
[Crossref]

Luo, J.

Y. Wu, J. Luo, M. Nikl, and G. Ren, “Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multimcomponentgarnets: An X-ray absorption near edge spectroscopy study,” APL Mater. 2(1), 012101 (2014).
[Crossref]

Macalik, B.

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

Mao, R.

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Marcelli, A.

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

Mares, J. A.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Marigo, A.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

Martin, S. W.

W. Zhou, S. W. Martin, D. Schwellenbach, and J. Hauptman, “New high-density fluoride glasses doped with CeF3,” J. Non-Cryst. Solids 184, 84–92 (1995).
[Crossref]

Mazzera, M.

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

McKinlay, K. J.

S. F. Shaukat, K. J. McKinlay, P. S. Flower, P. R. Hobson, and J. M. Parker, “Optical and physical characteristics of HBLAN fluoride glasses containing cerium,” J. Non-Cryst. Solids 244(2–3), 197–204 (1999).
[Crossref]

Mihokova, E.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Morazzoni, F.

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Moretti, F.

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Morinaga, K.

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

Murata, T.

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

Nikl, M.

Y. Wu, J. Luo, M. Nikl, and G. Ren, “Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multimcomponentgarnets: An X-ray absorption near edge spectroscopy study,” APL Mater. 2(1), 012101 (2014).
[Crossref]

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Nitsch, K.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Ouyang, S.

Y. Zhu, S. Ouyang, S. Gao, and W. Teng, “Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass,” J. Wuhan Univ. Technol. 24(5), 815–818 (2009).
[Crossref]

Parker, J. M.

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activeated heavy scintillating glasses,” J. Lumin. 128(1), 99–104 (2008).
[Crossref]

S. F. Shaukat, K. J. McKinlay, P. S. Flower, P. R. Hobson, and J. M. Parker, “Optical and physical characteristics of HBLAN fluoride glasses containing cerium,” J. Non-Cryst. Solids 244(2–3), 197–204 (1999).
[Crossref]

Patton, G.

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

Pazzi, G. P.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Pei, Z.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[Crossref]

Peng, M.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[Crossref]

Petiau, J.

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

Phunpueok, A.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Polato, P.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

Qin, L.

G. Ren, L. Qin, S. Lu, and H. Li, “Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions,” Nucl. Instru. Meth. A 531(3), 560–565 (2004).
[Crossref]

Qiu, J.

Q. Jiao, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Phenomenon of Eu3+ self-reduction induced by B2O3 configuration structure in sodiumborate glasses,” J. Appl. Phys. 114(4), 043107 (2013).
[Crossref]

Ren, G.

Y. Wu, J. Luo, M. Nikl, and G. Ren, “Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multimcomponentgarnets: An X-ray absorption near edge spectroscopy study,” APL Mater. 2(1), 012101 (2014).
[Crossref]

G. Ren, L. Qin, S. Lu, and H. Li, “Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions,” Nucl. Instru. Meth. A 531(3), 560–565 (2004).
[Crossref]

Ruan, W.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Ryba-Romanowski, W.

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

Sato, M.

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

Schwellenbach, D.

W. Zhou, S. W. Martin, D. Schwellenbach, and J. Hauptman, “New high-density fluoride glasses doped with CeF3,” J. Non-Cryst. Solids 184, 84–92 (1995).
[Crossref]

Scotti, R.

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Shaukat, S. F.

S. F. Shaukat, K. J. McKinlay, P. S. Flower, P. R. Hobson, and J. M. Parker, “Optical and physical characteristics of HBLAN fluoride glasses containing cerium,” J. Non-Cryst. Solids 244(2–3), 197–204 (1999).
[Crossref]

Shen, Y.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Sheng, Q.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Solarz, P.

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

Solovieva, N.

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Spinolo, G.

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Su, Q.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[Crossref]

Sun, X.

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Teng, W.

Y. Zhu, S. Ouyang, S. Gao, and W. Teng, “Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass,” J. Wuhan Univ. Technol. 24(5), 815–818 (2009).
[Crossref]

Trevisani, M.

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

Vedda, A.

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Wanarak, C.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Wang, J.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Wang, Q.

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
[Crossref]

Wu, Y.

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Y. Wu, J. Luo, M. Nikl, and G. Ren, “Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multimcomponentgarnets: An X-ray absorption near edge spectroscopy study,” APL Mater. 2(1), 012101 (2014).
[Crossref]

Xia, H.

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
[Crossref]

Xie, T.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Xu, X.

Q. Jiao, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Phenomenon of Eu3+ self-reduction induced by B2O3 configuration structure in sodiumborate glasses,” J. Appl. Phys. 114(4), 043107 (2013).
[Crossref]

Yang, B.

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
[Crossref]

Yao, Z.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Ye, Z.

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Ying, H.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Yoshida, H.

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

Yu, B.

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Yu, X.

Q. Jiao, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Phenomenon of Eu3+ self-reduction induced by B2O3 configuration structure in sodiumborate glasses,” J. Appl. Phys. 114(4), 043107 (2013).
[Crossref]

Zanella, G.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

Zannoni, R.

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

Zhang, J.

C. Jiang, P. Deng, J. Zhang, and F. Gan, “Radioluminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass,” Phys. Lett. A 323(3–4), 323–328 (2004).
[Crossref]

Zhang, Y.

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
[Crossref]

Zhang, Z.

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Zhao, G.

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

Zhao, J.

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Zhao, T.

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
[Crossref]

Zheng, G.

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

Zhou, D.

Q. Jiao, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Phenomenon of Eu3+ self-reduction induced by B2O3 configuration structure in sodiumborate glasses,” J. Appl. Phys. 114(4), 043107 (2013).
[Crossref]

Zhou, W.

W. Zhou, S. W. Martin, D. Schwellenbach, and J. Hauptman, “New high-density fluoride glasses doped with CeF3,” J. Non-Cryst. Solids 184, 84–92 (1995).
[Crossref]

Zhu, Y.

Y. Zhu, S. Ouyang, S. Gao, and W. Teng, “Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass,” J. Wuhan Univ. Technol. 24(5), 815–818 (2009).
[Crossref]

APL Mater. (1)

Y. Wu, J. Luo, M. Nikl, and G. Ren, “Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multimcomponentgarnets: An X-ray absorption near edge spectroscopy study,” APL Mater. 2(1), 012101 (2014).
[Crossref]

Appl. Phys. Lett. (1)

M. Nikl, K. Nitsch, E. Mihokova, N. Solovieva, J. A. Mares, G. P. Pazzi, P. Fabeni, G. P. Pazzi, and S. Baccaro, “Efficient radioluminescence of the Ce3+-doped Na-Gd phosphate glasses,” Appl. Phys. Lett. 77(14), 2159–2161 (2000).
[Crossref]

Chem. Mater. (1)

A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce3+ luminescence efficiency in Sol-Gel silica glasses,” Chem. Mater. 18(26), 6178–6185 (2006).
[Crossref]

Cryst. Growth Des. (1)

G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Gzowacki, and V. Domukhovski, “The Czochralski Growth of (Lu1-xGdx)2SiO5:Dy by single crystals: structural, optical, and dielectric characterization,” Cryst. Growth Des. 10(8), 3522–3530 (2010).
[Crossref]

J. Alloys Compd. (1)

Q. Wang, B. Yang, Y. Zhang, H. Xia, T. Zhao, and H. Jiang, “High light yield Ce3+-doped dense scintillating glasses,” J. Alloys Compd. 581, 801–804 (2013).
[Crossref]

J. Am. Ceram. Soc. (3)

S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, and G. Han, “Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air,” J. Am. Ceram. Soc. 91(8), 2740–2742 (2008).
[Crossref]

X. Sun, Z. Ye, Y. Wu, P. Gao, R. Mao, Z. Zhang, and J. Zhao, “A simple and highly efficient method for synthesis of Ce3+-activated borogermante scintillating glasses in air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

X. Sun, D. Jiang, S. Chen, G. Zheng, S. Huang, M. Gu, Z. Zhang, and J. Zhao, “Eu3+-activated borogermanate scintillating glass with a high Gd2O3 content,” J. Am. Ceram. Soc. 96(5), 1483–1489 (2013).
[Crossref]

J. Appl. Phys. (1)

Q. Jiao, X. Yu, X. Xu, D. Zhou, and J. Qiu, “Phenomenon of Eu3+ self-reduction induced by B2O3 configuration structure in sodiumborate glasses,” J. Appl. Phys. 114(4), 043107 (2013).
[Crossref]

J. Lumin. (2)

D. de Graaf, H. T. Hintzen, and G. de With, “The influence of the composition on the luminescence of Ce(III)–Ln–Si–Al–O–N glasses (Ln=Sc, Y, La, Gd),” J. Lumin. 104(1–2), 131–136 (2003).
[Crossref]

J. Fu, M. Kobayashi, and J. M. Parker, “Terbium-activeated heavy scintillating glasses,” J. Lumin. 128(1), 99–104 (2008).
[Crossref]

J. Mater. Chem. (1)

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[Crossref]

J. Mater. Sci. Lett. (1)

I. N. Chakraborty and R. A. Condrate., “Vibrational spectra of B2O3-GeO2-SiO2 glasses,” J. Mater. Sci. Lett. 5(3), 361–364 (1986).
[Crossref]

J. Non-Cryst. Solids (3)

T. Murata, M. Sato, H. Yoshida, and K. Morinaga, “Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses,” J. Non-Cryst. Solids 351(4), 312–316 (2005).
[Crossref]

W. Zhou, S. W. Martin, D. Schwellenbach, and J. Hauptman, “New high-density fluoride glasses doped with CeF3,” J. Non-Cryst. Solids 184, 84–92 (1995).
[Crossref]

S. F. Shaukat, K. J. McKinlay, P. S. Flower, P. R. Hobson, and J. M. Parker, “Optical and physical characteristics of HBLAN fluoride glasses containing cerium,” J. Non-Cryst. Solids 244(2–3), 197–204 (1999).
[Crossref]

J. Phys. Chem. (1)

E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikost, “Vibrational Spectra of magnesium-sodium-borate glasses II: Raman and mid-Infrared investigation of the network structure,” J. Phys. Chem. 91(5), 1073–1079 (1987).
[Crossref]

J. Phys. Chem. C (1)

F. Moretti, G. Patton, A. Belsky, M. Fasoli, A. Vedda, M. Trevisani, M. Bettinelli, and C. Dujardin, “Radioluminescence sensitization in scintillators phosphors: trap engineering and modeling,” J. Phys. Chem. C 118(18), 9670–9676 (2014).
[Crossref]

J. Wuhan Univ. Technol. (1)

Y. Zhu, S. Ouyang, S. Gao, and W. Teng, “Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass,” J. Wuhan Univ. Technol. 24(5), 815–818 (2009).
[Crossref]

Nucl. Instru. Meth. A (2)

G. Ren, L. Qin, S. Lu, and H. Li, “Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions,” Nucl. Instru. Meth. A 531(3), 560–565 (2004).
[Crossref]

G. Zanella, R. Zannoni, R. Dall’Igna, B. Locardi, P. Polato, M. Bettinelli, and A. Marigo, “A new cerium scintillating glass for X-ray detection,” Nucl. Instru. Meth. A 345(1), 198–201 (1994).
[Crossref]

Phys. Lett. A (1)

C. Jiang, P. Deng, J. Zhang, and F. Gan, “Radioluminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass,” Phys. Lett. A 323(3–4), 323–328 (2004).
[Crossref]

Phys. Rev. B Condens. Matter (1)

A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, “Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption,” Phys. Rev. B Condens. Matter 35(2), 806–812 (1987).
[Crossref] [PubMed]

Phys. Status Solidi A (1)

W. Chewpraditkul, X. He, D. Chen, Y. Shen, Q. Sheng, B. Yu, M. Nikl, R. Kucerkova, A. Beitlerova, C. Wanarak, and A. Phunpueok, “Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration,” Phys. Status Solidi A 208(12), 1–3 (2011).
[Crossref]

Other (1)

W. Dai, H. Marcacci, B. Lynch, H. Menkara, B. Wagner, Z. Kang, C. Wang, Y. Diawara, and R. Engels, “Rare-earth activated glass and glass-ceramic for neutron detection,” MRS Proc. 147,1–6(2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 FT-IR absorption spectra (a) and the corresponding normalized FT-IR absorption spectra at about 705 cm−1 (b). Inset shows the enlargement wavenumber region of 850-1050 cm−1.
Fig. 2
Fig. 2 Transmittance spectra (a) and digital photographs (b).
Fig. 3
Fig. 3 Ce LIII-edge XANES spectra of borogermanate scintillating glasses, and XANES spectra of CeO2 and CeF3 reference samples (b).
Fig. 4
Fig. 4 Excitation (a) and emission (b) spectra.
Fig. 5
Fig. 5 Luminescence decay curves.
Fig. 6
Fig. 6 XEL spectra.

Tables (1)

Tables Icon

Table 1 The mean lifetimes of Ce3+ ions in various scintillating glasses

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

12CeO 2 + Si 3 N 4 6Ce 2 O 3 + 3SiO 2 + 2N 2
I(t)= A 1 exp( t 1 τ 1 )+ A 2 exp( t 2 τ 2 )
τ= A 1 τ 1 2 + A 2 τ 2 2 A 1 τ 1 + A 2 τ 2

Metrics