Abstract

The dielectric properties of an elastomeric polymer are modified with the inclusion of dopants, with the aim of reducing dielectric loss in the terahertz range. Polydimethylsiloxane (PDMS) is selected as the host polymer, and micro/nano-particle powders of either alumina or polytetrafluoroethylene (PTFE) are employed as dopants. Composite samples are prepared, and characterised with terahertz time-domain spectroscopy (THz-TDS). The samples exhibit significantly reduced dielectric loss, with a maximum reduction of 15.3% in loss tangent reported for a sample that is 40% PTFE by mass. Results are found to have reasonable agreement with the Lichtenecker logarithmic mixture formula, and any deviation can be accounted for by agglomeration of dopant micro/nano-particles. The new dielectric composites are promising for devising efficient micro-structure components at terahertz frequencies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate determination of dielectric permittivity of polymers from 75  GHz to 1.6  THz using both S-parameters and transmission spectroscopy

Tianying Chang, Xiansheng Zhang, Xiaoxuan Zhang, and Hong-Liang Cui
Appl. Opt. 56(12) 3287-3292 (2017)

Flexible and tunable terahertz all-dielectric metasurface composed of ceramic spheres embedded in ferroelectric/ elastomer composite

Chuwen Lan, Di Zhu, Jiannan Gao, Bo Li, and Zehua Gao
Opt. Express 26(9) 11633-11638 (2018)

Cryogenic infrared filter made of alumina for use at millimeter wavelength

Yuki Inoue, Tomotake Matsumura, Masashi Hazumi, Adrian T. Lee, Takahiro Okamura, Aritoki Suzuki, Takayuki Tomaru, and Hiroshi Yamaguchi
Appl. Opt. 53(9) 1727-1733 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145 (1997).
    [Crossref]
  2. T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
    [Crossref] [PubMed]
  3. T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
    [Crossref] [PubMed]
  4. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
    [Crossref]
  5. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
    [Crossref] [PubMed]
  6. M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
    [Crossref]
  7. R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014).
    [Crossref]
  8. H. Tanoto, L. Ding, and J. Teng, “Tunable terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 6, 1–25 (2013).
  9. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
    [Crossref]
  10. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
    [Crossref] [PubMed]
  11. I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
    [Crossref]
  12. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
    [Crossref] [PubMed]
  13. N. Han, Z. Chen, C. Lim, B. Ng, and M. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19, 6990–6998 (2011).
    [Crossref] [PubMed]
  14. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [Crossref]
  15. H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).
  16. Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013),
    [Crossref]
  17. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
    [Crossref]
  18. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  19. R. H. Giles, A. Gatesman, J. Fitzgerald, S. Fisk, and J. Waldman, “Tailoring artificial dielectric materials at tera-hertz frequencies,” in Proc. of the Fourth International Symposium of Space THz Technology, 124 (Los Angeles, CA, 1993).
  20. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28, 917–921 (2011).
    [Crossref]
  21. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
    [Crossref]
  22. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
    [Crossref]
  23. S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
    [Crossref]
  24. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
    [Crossref]
  25. K. Berdel, J. G. Rivas, P. H. Bolívar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005).
    [Crossref]
  26. Z. Haskal, A. Davis, A. McAllister, and E. Furth, “PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation,” Radiology 205, 682–688 (1997).
    [Crossref] [PubMed]
  27. Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997).
    [Crossref]
  28. R. Simpkin, “Derivation of Lichtenecker’s logarithmic mixture formula from Maxwell’s equations,” IEEE T. Microw. Theory 58, 545–550 (2010).
    [Crossref]
  29. B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
    [Crossref]
  30. W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J Infrared Millim. Terahertz Wave 35, 610–637 (2014).
    [Crossref]
  31. A. Sihvola, “Two main avenues leading to the maxwell garnett mixing rule,” J. Electromagnet. Wave 15, 715–725 (2001).
    [Crossref]
  32. J. M. Garnett, “Colours in metal glasses and in metallic films,” Proc. Roy. Soc. Lond., pp. 443–445 (1904).
    [Crossref]
  33. H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31, 401–406 (1965).
    [Crossref]
  34. A. Hernandez-Serrano, S. Corzo-Garcia, E. Garcia-Sanchez, M. Alfaro, and E. Castro-Camus, “Quality control of leather by terahertz time domain spectroscopy,” Appl. Opt. 53, 7872–7876 (2014).
    [Crossref]
  35. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45, 216–220 (1974).
    [Crossref]
  36. K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005).
    [Crossref] [PubMed]
  37. C. Nelson, S. Sant, L. Overzet, and M. Goeckner, “Surface kinetics with low ion energy bombardment in fluoro-carbon plasmas,” Plasma Sources Sci. T. 16, 813 (2007).
    [Crossref]

2015 (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

2014 (5)

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014).
[Crossref]

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J Infrared Millim. Terahertz Wave 35, 610–637 (2014).
[Crossref]

A. Hernandez-Serrano, S. Corzo-Garcia, E. Garcia-Sanchez, M. Alfaro, and E. Castro-Camus, “Quality control of leather by terahertz time domain spectroscopy,” Appl. Opt. 53, 7872–7876 (2014).
[Crossref]

2013 (5)

B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
[Crossref]

H. Tanoto, L. Ding, and J. Teng, “Tunable terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 6, 1–25 (2013).

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

2012 (2)

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref] [PubMed]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

2011 (4)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

N. Han, Z. Chen, C. Lim, B. Ng, and M. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19, 6990–6998 (2011).
[Crossref] [PubMed]

B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28, 917–921 (2011).
[Crossref]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

2010 (3)

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

R. Simpkin, “Derivation of Lichtenecker’s logarithmic mixture formula from Maxwell’s equations,” IEEE T. Microw. Theory 58, 545–550 (2010).
[Crossref]

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

2009 (1)

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[Crossref]

2008 (1)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

2007 (2)

S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[Crossref]

C. Nelson, S. Sant, L. Overzet, and M. Goeckner, “Surface kinetics with low ion energy bombardment in fluoro-carbon plasmas,” Plasma Sources Sci. T. 16, 813 (2007).
[Crossref]

2006 (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

2005 (2)

K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005).
[Crossref] [PubMed]

K. Berdel, J. G. Rivas, P. H. Bolívar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005).
[Crossref]

2001 (1)

A. Sihvola, “Two main avenues leading to the maxwell garnett mixing rule,” J. Electromagnet. Wave 15, 715–725 (2001).
[Crossref]

1997 (3)

Z. Haskal, A. Davis, A. McAllister, and E. Furth, “PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation,” Radiology 205, 682–688 (1997).
[Crossref] [PubMed]

Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997).
[Crossref]

J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

1974 (1)

J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45, 216–220 (1974).
[Crossref]

1965 (1)

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31, 401–406 (1965).
[Crossref]

Abbott, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Alfaro, M.

Astley, V.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

Averitt, R.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).

Averitt, R. D.

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Berdel, K.

K. Berdel, J. G. Rivas, P. H. Bolívar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005).
[Crossref]

Bergveld, P.

J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Bhaskaran, M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Bingham, C.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).

Bolívar, P. H.

K. Berdel, J. G. Rivas, P. H. Bolívar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005).
[Crossref]

Castro-Camus, E.

Chang, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Chen, Z.

Cheng, Y. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Chenoweth, K.

K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005).
[Crossref] [PubMed]

Cheung, S.

K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005).
[Crossref] [PubMed]

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Chowdhury, D. R.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Corzo-Garcia, S.

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Davis, A.

Z. Haskal, A. Davis, A. McAllister, and E. Furth, “PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation,” Radiology 205, 682–688 (1997).
[Crossref] [PubMed]

de Maagt, P.

K. Berdel, J. G. Rivas, P. H. Bolívar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005).
[Crossref]

Ding, L.

H. Tanoto, L. Ding, and J. Teng, “Tunable terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 6, 1–25 (2013).

Dubois, C.

Dupuis, A.

Fan, K.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).

Fischer, B. M.

B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
[Crossref]

Fisk, S.

R. H. Giles, A. Gatesman, J. Fitzgerald, S. Fisk, and J. Waldman, “Tailoring artificial dielectric materials at tera-hertz frequencies,” in Proc. of the Fourth International Symposium of Space THz Technology, 124 (Los Angeles, CA, 1993).

Fitzgerald, J.

R. H. Giles, A. Gatesman, J. Fitzgerald, S. Fisk, and J. Waldman, “Tailoring artificial dielectric materials at tera-hertz frequencies,” in Proc. of the Fourth International Symposium of Space THz Technology, 124 (Los Angeles, CA, 1993).

Fumeaux, C.

Furth, E.

Z. Haskal, A. Davis, A. McAllister, and E. Furth, “PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation,” Radiology 205, 682–688 (1997).
[Crossref] [PubMed]

Garcia-Sanchez, E.

Garnett, J. M.

J. M. Garnett, “Colours in metal glasses and in metallic films,” Proc. Roy. Soc. Lond., pp. 443–445 (1904).
[Crossref]

Gatesman, A.

R. H. Giles, A. Gatesman, J. Fitzgerald, S. Fisk, and J. Waldman, “Tailoring artificial dielectric materials at tera-hertz frequencies,” in Proc. of the Fourth International Symposium of Space THz Technology, 124 (Los Angeles, CA, 1993).

Giles, R. H.

R. H. Giles, A. Gatesman, J. Fitzgerald, S. Fisk, and J. Waldman, “Tailoring artificial dielectric materials at tera-hertz frequencies,” in Proc. of the Fourth International Symposium of Space THz Technology, 124 (Los Angeles, CA, 1993).

Glueck, J.

Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997).
[Crossref]

Goddard, W. A.

K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005).
[Crossref] [PubMed]

Goeckner, M.

C. Nelson, S. Sant, L. Overzet, and M. Goeckner, “Surface kinetics with low ion energy bombardment in fluoro-carbon plasmas,” Plasma Sources Sci. T. 16, 813 (2007).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Gutruf, P.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

Han, N.

Hangyo, M.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014).
[Crossref]

Haskal, Z.

Z. Haskal, A. Davis, A. McAllister, and E. Furth, “PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation,” Radiology 205, 682–688 (1997).
[Crossref] [PubMed]

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Headland, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Hernandez-Serrano, A.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Hong, M.

Huang, Y.

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

Iwaszczuk, K.

Jansen, C.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[Crossref]

S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[Crossref]

Jen, A. K.-Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jepsen, P. U.

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kang, K.-Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Kang, Z.

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

Khodasevych, I.

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kim, R.-H.

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Kober, E. M.

K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005).
[Crossref] [PubMed]

Koch, M.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[Crossref]

S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[Crossref]

Kurz, H.

K. Berdel, J. G. Rivas, P. H. Bolívar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005).
[Crossref]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Landy, N.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Lee, Y.-H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Li, J.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
[Crossref]

Li, M.

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

Liang, M.

Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013),
[Crossref]

Lim, C.

Lin, H.

B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
[Crossref]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Looyenga, H.

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31, 401–406 (1965).
[Crossref]

Lötters, J.

J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Lu, Y.

Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013),
[Crossref]

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Makinouchi, K.

Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997).
[Crossref]

McAllister, A.

Z. Haskal, A. Davis, A. McAllister, and E. Furth, “PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation,” Radiology 205, 682–688 (1997).
[Crossref] [PubMed]

Menekse, H.

Metselaar, R.

J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45, 216–220 (1974).
[Crossref]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Mitchell, A.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Mittleman, D.

S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[Crossref]

Mittleman, D. M.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

Miyamaru, F.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014).
[Crossref]

Mounaix, P.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014).
[Crossref]

Naftaly, M.

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J Infrared Millim. Terahertz Wave 35, 610–637 (2014).
[Crossref]

Nakazawa, T.

Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997).
[Crossref]

Nelson, C.

C. Nelson, S. Sant, L. Overzet, and M. Goeckner, “Surface kinetics with low ion energy bombardment in fluoro-carbon plasmas,” Plasma Sources Sci. T. 16, 813 (2007).
[Crossref]

Ng, B.

Nie, Y.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Nili, H.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

Niu, T.

Nosé, Y.

Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997).
[Crossref]

Olthuis, W.

J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Overzet, L.

C. Nelson, S. Sant, L. Overzet, and M. Goeckner, “Surface kinetics with low ion energy bombardment in fluoro-carbon plasmas,” Plasma Sources Sci. T. 16, 813 (2007).
[Crossref]

Padilla, W.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Peelen, J.

J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45, 216–220 (1974).
[Crossref]

Pilon, D.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Rivas, J. G.

K. Berdel, J. G. Rivas, P. H. Bolívar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005).
[Crossref]

Rogers, J. A.

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

Rowe, W.

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Rutz, F.

S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[Crossref]

Sant, S.

C. Nelson, S. Sant, L. Overzet, and M. Goeckner, “Surface kinetics with low ion energy bombardment in fluoro-carbon plasmas,” Plasma Sources Sci. T. 16, 813 (2007).
[Crossref]

Scheller, M.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[Crossref]

Shah, C. M.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Shrekenhamer, D.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Sihvola, A.

A. Sihvola, “Two main avenues leading to the maxwell garnett mixing rule,” J. Electromagnet. Wave 15, 715–725 (2001).
[Crossref]

Simpkin, R.

R. Simpkin, “Derivation of Lichtenecker’s logarithmic mixture formula from Maxwell’s equations,” IEEE T. Microw. Theory 58, 545–550 (2010).
[Crossref]

Skorobogatiy, M.

Sriram, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Stoeffler, K.

Strikwerda, A.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).

Strikwerda, A. C.

Takami, Y.

Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997).
[Crossref]

Takano, K.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014).
[Crossref]

Tang, Q.

Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013),
[Crossref]

Tanoto, H.

H. Tanoto, L. Ding, and J. Teng, “Tunable terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 6, 1–25 (2013).

Tao, H.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Teng, J.

H. Tanoto, L. Ding, and J. Teng, “Tunable terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 6, 1–25 (2013).

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Ung, B.

Ung, B. S. Y.

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Ung, B. S.-Y.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

Ung, B.-Y.

B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
[Crossref]

Upadhyay, A.

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Van Duin, A. C.

K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005).
[Crossref] [PubMed]

Veltink, P.

J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Waldman, J.

R. H. Giles, A. Gatesman, J. Fitzgerald, S. Fisk, and J. Waldman, “Tailoring artificial dielectric materials at tera-hertz frequencies,” in Proc. of the Fourth International Symposium of Space THz Technology, 124 (Los Angeles, CA, 1993).

Walia, S.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

Wietzke, S.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[Crossref]

S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[Crossref]

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Wilmink, G. J.

Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013),
[Crossref]

Withayachumnankul, W.

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J Infrared Millim. Terahertz Wave 35, 610–637 (2014).
[Crossref]

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Wong, P. K.

Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013),
[Crossref]

Wu, J.

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

Xiao, J.

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

Xin, H.

Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013),
[Crossref]

Yahiaoui, R.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, X.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

Acta Mech. Solida Sin. (1)

M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[Crossref]

Appl. Phys. Rev. (1)

S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).
[Crossref]

IEEE T. Microw. Theory (2)

R. Simpkin, “Derivation of Lichtenecker’s logarithmic mixture formula from Maxwell’s equations,” IEEE T. Microw. Theory 58, 545–550 (2010).
[Crossref]

K. Berdel, J. G. Rivas, P. H. Bolívar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz time-domain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013).
[Crossref]

H. Tanoto, L. Ding, and J. Teng, “Tunable terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 6, 1–25 (2013).

J Infrared Millim. Terahertz Wave (1)

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J Infrared Millim. Terahertz Wave 35, 610–637 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005).
[Crossref] [PubMed]

J. Appl. Phys. (2)

J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45, 216–220 (1974).
[Crossref]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[Crossref]

J. Electromagnet. Wave (1)

A. Sihvola, “Two main avenues leading to the maxwell garnett mixing rule,” J. Electromagnet. Wave 15, 715–725 (2001).
[Crossref]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Micromech. Microeng. (1)

J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

J. of Biomed. Mater. Res. (1)

Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997).
[Crossref]

J. Opt. (1)

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[Crossref]

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. B (1)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Physica (1)

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31, 401–406 (1965).
[Crossref]

Plasma Sources Sci. T. (1)

C. Nelson, S. Sant, L. Overzet, and M. Goeckner, “Surface kinetics with low ion energy bombardment in fluoro-carbon plasmas,” Plasma Sources Sci. T. 16, 813 (2007).
[Crossref]

Polym. Test. (1)

S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[Crossref]

Radiology (1)

Z. Haskal, A. Davis, A. McAllister, and E. Furth, “PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation,” Radiology 205, 682–688 (1997).
[Crossref] [PubMed]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref] [PubMed]

Other (4)

H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008).

Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013),
[Crossref]

R. H. Giles, A. Gatesman, J. Fitzgerald, S. Fisk, and J. Waldman, “Tailoring artificial dielectric materials at tera-hertz frequencies,” in Proc. of the Fourth International Symposium of Space THz Technology, 124 (Los Angeles, CA, 1993).

J. M. Garnett, “Colours in metal glasses and in metallic films,” Proc. Roy. Soc. Lond., pp. 443–445 (1904).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 SEM images of 40%wt PTFE-doped sample at (a) 100× and (b) 1000×, and the alumina-doped sample at (c) 100× and (d) 1000×. Scale of wavelength at 1 THz is shown in red in (a).
Fig. 2
Fig. 2 Material properties of doped PDMS samples, showing; (a) relative permittivity of PTFE-doped samples, (b) loss tangent of PTFE-doped samples, (c) relative permittivity of alumina-doped samples, and (d) loss tangent of alumina-doped samples. The dopant percentage by mass varies from 0%, 10%, 20%, to 40%. Error ranges due to variation in sample thickness and dopant aggregation are indicated with coloured regions.
Fig. 3
Fig. 3 Material properties of doped PDMS samples, showing; (a) index of refraction of PTFE-doped samples, (b) absorption coefficient of PTFE-doped samples, (c) index of refraction of alumina-doped samples, and (d) absorption coefficient of alumina-doped samples. Error ranges due to variation in sample thickness and dopant aggregation are indicated with coloured regions.
Fig. 4
Fig. 4 Comparison of measured results with effective medium theory at 0.7 THz. Error bars on measured results show the measurement uncertainty due to variation in sample thickness.

Tables (2)

Tables Icon

Table 1 Thicknesses of all PDMS samples, as measured with both SEM and micrometer readout, including standard deviations.

Tables Icon

Table 2 Extracted material properties at 0.7 THz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε eff = n = 1 N ε n f v , n .
f v = f m ρ H f m ρ H + ( 1 f m ) ρ D .

Metrics