Abstract

We study the optical properties of polymer layers filled with phosphor particles in two aspects. First, we used two different polymer binders with refractive indices n = 1.46 and n = 1.61 (λ = 600 nm) to study the influence of Δn with the phosphor particles (n = 1.81). Second, we prepared two particle size distributions D50 = 12 µm and D50 = 19 µm. The particles were dispersed in both polymer binders in several volume concentrations and coated with thicknesses of 150-600 µm onto glass substrates. Experimental results and numerical simulations show that the layers of the higher refractive index binder with larger particles result in the highest optical transmittance in the visible light spectrum. Finally, we used numerical simulations to determine optimal layer composition for application in realistic photovoltaic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Anastasiia Solodovnyk, Karen Forberich, Edda Stern, Janez Krč, Marko Topič, Miroslaw Batentschuk, Benjamin Lipovšek, and Christoph J. Brabec, "Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics: publisher’s note," Opt. Mater. Express 5, 1806-1806 (2015)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-5-8-1806

OSA Recommended Articles
Optical model for simulation and optimization of luminescent down-shifting layers filled with phosphor particles for photovoltaics

Benjamin Lipovšek, Anastasiia Solodovnyk, Karen Forberich, Edda Stern, Janez Krč, Christoph J. Brabec, and Marko Topič
Opt. Express 23(15) A882-A895 (2015)

The use of the adding-doubling method for the optical optimization of planar luminescent down shifting layers for solar cells

Sven Leyre, Jan Cappelle, Guy Durinck, Aimi Abass, Johan Hofkens, Geert Deconinck, and Peter Hanselaer
Opt. Express 22(S3) A765-A778 (2014)

Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-pumped green-emitting phosphor

Qi Zhang, Ruilin Zheng, Jianyong Ding, and Wei Wei
Opt. Lett. 43(15) 3566-3569 (2018)

References

  • View by:
  • |
  • |
  • |

  1. EUPVSEC, 2014, Press Release, “The European Photovoltaic Solar Energy Conference and Exhibition 2014 Confirms the Future of PV as a Major Electricity Source,” https://www.photovoltaic-conference.com/pressnews/press-releases/english/2044-pr-e-26sept2014.html .
  2. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
    [Crossref]
  3. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15(10), 2299–2300 (1976).
    [Crossref] [PubMed]
  4. A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
    [Crossref]
  5. E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
    [Crossref]
  6. E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
    [Crossref]
  7. W. G. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - A review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
    [Crossref] [PubMed]
  8. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
    [Crossref]
  9. X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
    [Crossref]
  10. S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
    [Crossref]
  11. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
    [Crossref]
  12. H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
    [Crossref] [PubMed]
  13. D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).
  14. R. Hu and X. Luo, “A model for calculating the bidirectional scattering properties of phosphor layer in white light-emitting diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
    [Crossref]
  15. P. F. Liaparinos, “Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation,” Med. Phys. 40(10), 101911 (2013).
    [Crossref] [PubMed]
  16. S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
    [Crossref]
  17. B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
    [Crossref]
  18. K. Y. Qian, J. Ma, W. Fu, and Y. Luo, “Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory,” Wuli Xuebao, Acta Phys. Sin. 61, 204201 (2012).
  19. H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes: reply to comments,” Opt. Express 21(4), 5074–5076 (2013).
    [Crossref] [PubMed]
  20. V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. Ijzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22(7), 8190–8204 (2014).
    [Crossref] [PubMed]
  21. P. C. Wang, Y. K. Su, C. L. Lin, and G. S. Huang, “Improving performance and reducing amount of phosphor required in packaging of white LEDs With TiO2-doped silicone,” IEEE Electron Device Lett. 35, 657–659 (2014).
    [Crossref]
  22. B. Lipovšek, J. Krč, and M. Topič, “Optimization of Microtextured Light-Management Films for Enhanced Light Trapping in Organic Solar Cells Under Perpendicular and Oblique Illumination Conditions,” Photovoltaics, IEEE Journal of 4(2), 639–646 (2014).
    [Crossref]
  23. B. Lipovšek, University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia, and A. Solodovnyk, K. Forberich, E. Stern, C. J. Brabec, J. Krč, and M. Topič are preparing a manuscript to be called “Optical model for simulation and optimization of luminescent down-shifting layers filled with phosphor particles for photovoltaics”.
  24. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
    [Crossref]
  25. A. Čampa, “NIKA - model for extracting refractive indices.,” in Proceedings of the 48th International Conference on Microelectronics, Devices and Materials & the Workshop on Ceramic Microsystems, D. Belavič, and I. Šorli, eds. (Otočec, Slovenia., 19 - 21 September, 2012).
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007).

2014 (5)

D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).

P. C. Wang, Y. K. Su, C. L. Lin, and G. S. Huang, “Improving performance and reducing amount of phosphor required in packaging of white LEDs With TiO2-doped silicone,” IEEE Electron Device Lett. 35, 657–659 (2014).
[Crossref]

B. Lipovšek, J. Krč, and M. Topič, “Optimization of Microtextured Light-Management Films for Enhanced Light Trapping in Organic Solar Cells Under Perpendicular and Oblique Illumination Conditions,” Photovoltaics, IEEE Journal of 4(2), 639–646 (2014).
[Crossref]

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. Ijzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22(7), 8190–8204 (2014).
[Crossref] [PubMed]

2013 (3)

H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes: reply to comments,” Opt. Express 21(4), 5074–5076 (2013).
[Crossref] [PubMed]

P. F. Liaparinos, “Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation,” Med. Phys. 40(10), 101911 (2013).
[Crossref] [PubMed]

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

2012 (5)

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

K. Y. Qian, J. Ma, W. Fu, and Y. Luo, “Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory,” Wuli Xuebao, Acta Phys. Sin. 61, 204201 (2012).

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
[Crossref] [PubMed]

R. Hu and X. Luo, “A model for calculating the bidirectional scattering properties of phosphor layer in white light-emitting diodes,” J. Lightwave Technol. 30(21), 3376–3380 (2012).
[Crossref]

2011 (2)

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[Crossref]

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

2010 (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

2009 (1)

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

2008 (1)

2006 (1)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

2004 (1)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

1977 (1)

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

1976 (1)

Barnham, K. W. J.

Bende, E. E.

Bose, R.

Büchtemann, A.

Budel, T.

Bugrov, V. E.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Burgers, A. R.

Cao, Y. G.

D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).

Chatten, A. J.

Chen, D. C.

D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).

Deng, Z. H.

D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).

Do, Y. R.

Donegá, C. M.

Fan, Z.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Farrell, D. J.

Fu, H.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Fu, W.

K. Y. Qian, J. Ma, W. Fu, and Y. Luo, “Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory,” Wuli Xuebao, Acta Phys. Sin. 61, 204201 (2012).

Goetzberger, A.

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Greube, W.

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Gupta, S.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Hu, R.

Huang, G. S.

P. C. Wang, Y. K. Su, C. L. Lin, and G. S. Huang, “Improving performance and reducing amount of phosphor required in packaging of white LEDs With TiO2-doped silicone,” IEEE Electron Device Lett. 35, 657–659 (2014).
[Crossref]

Huang, X. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Ijzerman, W. L.

Ishizawa, N.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Kalytchuk, S.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Kennedy, M.

Kershaw, S. V.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Klampaftis, E.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Koole, R.

Kovsh, A. R.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Krc, J.

B. Lipovšek, J. Krč, and M. Topič, “Optimization of Microtextured Light-Management Films for Enhanced Light Trapping in Organic Solar Cells Under Perpendicular and Oblique Illumination Conditions,” Photovoltaics, IEEE Journal of 4(2), 639–646 (2014).
[Crossref]

Kuwano, Y.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Kwok, E. C. H.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Lagendijk, A.

Lambe, J.

Leung, V. Y. F.

Li, D.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

Li, Q.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

Liaparinos, P. F.

P. F. Liaparinos, “Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation,” Med. Phys. 40(10), 101911 (2013).
[Crossref] [PubMed]

Lin, C. L.

P. C. Wang, Y. K. Su, C. L. Lin, and G. S. Huang, “Improving performance and reducing amount of phosphor required in packaging of white LEDs With TiO2-doped silicone,” IEEE Electron Device Lett. 35, 657–659 (2014).
[Crossref]

Lipnitskaya, S. N.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Lipovšek, B.

B. Lipovšek, J. Krč, and M. Topič, “Optimization of Microtextured Light-Management Films for Enhanced Light Trapping in Organic Solar Cells Under Perpendicular and Oblique Illumination Conditions,” Photovoltaics, IEEE Journal of 4(2), 639–646 (2014).
[Crossref]

Liu, Q. L.

D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).

Liu, Z. G.

D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).

Luo, X.

Luo, Y.

K. Y. Qian, J. Ma, W. Fu, and Y. Luo, “Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory,” Wuli Xuebao, Acta Phys. Sin. 61, 204201 (2012).

Ma, J.

K. Y. Qian, J. Ma, W. Fu, and Y. Luo, “Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory,” Wuli Xuebao, Acta Phys. Sin. 61, 204201 (2012).

McCormack, S. J.

McIntosh, K. R.

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Meijerink, A.

Meyer, A.

Meyer, T.

Mosk, A. P.

Mynbaev, K. D.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Odnoblyudov, M. A.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Oh, J. H.

Oh, J. R.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

Park, B. K.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

Park, H. K.

Pi, X.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

Qian, K. Y.

K. Y. Qian, J. Ma, W. Fu, and Y. Luo, “Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory,” Wuli Xuebao, Acta Phys. Sin. 61, 204201 (2012).

Quilitz, J.

Richards, B. S.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Rogach, A. L.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Romanov, A. E.

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Ross, D.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Seyrling, S.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

Slooff, L. H.

Su, Y. K.

P. C. Wang, Y. K. Su, C. L. Lin, and G. S. Huang, “Improving performance and reducing amount of phosphor required in packaging of white LEDs With TiO2-doped silicone,” IEEE Electron Device Lett. 35, 657–659 (2014).
[Crossref]

Suda, K.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Teoh, W. Y.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Tiwari, A. N.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

Topic, M.

B. Lipovšek, J. Krč, and M. Topič, “Optimization of Microtextured Light-Management Films for Enhanced Light Trapping in Organic Solar Cells Under Perpendicular and Oblique Illumination Conditions,” Photovoltaics, IEEE Journal of 4(2), 639–646 (2014).
[Crossref]

Tukker, T. W.

van Sark, W. G.

Vaneski, A.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Vanmaekelbergh, D.

Vos, W. L.

Wang, C.

D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).

Wang, C.-F.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Wang, P. C.

P. C. Wang, Y. K. Su, C. L. Lin, and G. S. Huang, “Improving performance and reducing amount of phosphor required in packaging of white LEDs With TiO2-doped silicone,” IEEE Electron Device Lett. 35, 657–659 (2014).
[Crossref]

Weber, W. H.

Yamada, T.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Yang, D.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

Zhang, Q. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Zhovtiuk, O.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

IEEE Electron Device Lett. (1)

P. C. Wang, Y. K. Su, C. L. Lin, and G. S. Huang, “Improving performance and reducing amount of phosphor required in packaging of white LEDs With TiO2-doped silicone,” IEEE Electron Device Lett. 35, 657–659 (2014).
[Crossref]

J. Cryst. Growth (1)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

J. Electrochem. Soc. (1)

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. C (1)

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Med. Phys. (1)

P. F. Liaparinos, “Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation,” Med. Phys. 40(10), 101911 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Photovoltaics, IEEE Journal of (1)

B. Lipovšek, J. Krč, and M. Topič, “Optimization of Microtextured Light-Management Films for Enhanced Light Trapping in Organic Solar Cells Under Perpendicular and Oblique Illumination Conditions,” Photovoltaics, IEEE Journal of 4(2), 639–646 (2014).
[Crossref]

Prog. Mater. Sci. (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[Crossref]

Rare Met. (1)

D. C. Chen, Z. G. Liu, Z. H. Deng, C. Wang, Y. G. Cao, and Q. L. Liu, “Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode,” Rare Met. 33, 348–352 (2014).

Sol. Energy Mater. Sol. Cells (4)

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Tech. Phys. Lett. (1)

S. N. Lipnitskaya, K. D. Mynbaev, V. E. Bugrov, A. R. Kovsh, M. A. Odnoblyudov, and A. E. Romanov, “Effects of light scattering in optical coatings on energy losses in LED devices,” Tech. Phys. Lett. 39(12), 1074–1077 (2013).
[Crossref]

Wuli Xuebao, Acta Phys. Sin. (1)

K. Y. Qian, J. Ma, W. Fu, and Y. Luo, “Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory,” Wuli Xuebao, Acta Phys. Sin. 61, 204201 (2012).

Other (4)

EUPVSEC, 2014, Press Release, “The European Photovoltaic Solar Energy Conference and Exhibition 2014 Confirms the Future of PV as a Major Electricity Source,” https://www.photovoltaic-conference.com/pressnews/press-releases/english/2044-pr-e-26sept2014.html .

B. Lipovšek, University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia, and A. Solodovnyk, K. Forberich, E. Stern, C. J. Brabec, J. Krč, and M. Topič are preparing a manuscript to be called “Optical model for simulation and optimization of luminescent down-shifting layers filled with phosphor particles for photovoltaics”.

A. Čampa, “NIKA - model for extracting refractive indices.,” in Proceedings of the 48th International Conference on Microelectronics, Devices and Materials & the Workshop on Ceramic Microsystems, D. Belavič, and I. Šorli, eds. (Otočec, Slovenia., 19 - 21 September, 2012).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Calculated with NIKA index of refraction and extinction coefficient dispersions of the chosen matrix materials LIM (low-index) and HIM (high-index); (b) Transmittance (T), reflectance (R), and absorbance (A) of the coatings on glass (layer thicknesses between 290 and 370 µm).
Fig. 2
Fig. 2 Properties of the phosphor particles GAL 545L (modification of Lu3Al5O12:Ce3+): (a) SEM image of the powder; (b) photoluminescence excitation (PLE) and emission (PL) spectra.
Fig. 3
Fig. 3 Comparison of experimental data (solid lines) and simulation results (dotted lines) of (a) total transmittance and (b) total reflectance of coated layers at λ = 600 nm depending on their thickness and particle volume concentration (PVC) in the binders LIM (n = 1.45, squares) and HIM (n = 1.61, stars). Arrows follow the increase in the refractive index of the matrix.
Fig. 4
Fig. 4 Calculated extinction efficiency (Qext) as a function of phosphor particle diameter in LIM (n = 1.45) and HIM (n = 1.61). Also shown are different particle diameter distributions (right axis), where “Initial” – initial powder size distribution (mean 12.2 µm), and the two sieved distributions: “Large” (mean 18.8 µm) and “Small” (mean 11.3 µm). Simulations were done for the wavelength λ = 600 nm, where the particle refractive index is n = 1.81.
Fig. 5
Fig. 5 Influence of particle size distribution in LIM (n = 1.45, squares) and HIM (n = 1.61, stars) at λ = 600 nm on the total transmittance of layers with particle volume concentration: (a) PVC = 6%; (b) PVC = 13%. Arrows follow transition from the small fraction (“Small”) to the large fraction (“Large”) particles in one binder. Comparison of experimental data (solid lines) and simulation results (dotted lines). Inset: Photo of the coating in HIM with “large” fraction particles, PVC = 6%, thickness 250 µm.
Fig. 6
Fig. 6 Simulation results of the total transmittance of the LDS layers at λ = 600 nm with (“LDS layer”) and without (“binder”) phosphor particles coated on glass and on silicon wafer (n = 3.933, no absorption in silicon is assumed) depending on binder‘s refractive index nb. (Layer thickness 230µm, particle volume concentration 13%).

Tables (1)

Tables Icon

Table 1 Properties of the chosen matrix materials LIM (low-index) and HIM (high-index)

Metrics