Abstract

We report on the fabrication of waveguide beam splitters in z-cut LiNbO3 crystal by direct femtosecond laser writing. The guidance is valid only for TM polarization due to the Type I modification of extraordinary refractive index (ne) induced by femtosecond laser pulses. With single scan of femtosecond laser beams over the crystal bulk, the structures with channel geometry have been produced. In this work, such waveguide configurations were created as one-dimensional (1D) straight waveguide, two-dimensional (2D) 1 × 2 and three-dimensional (3D) 1 × 4 waveguide beam splitters. The waveguide beam splitters are characterized at the wavelength of 632.8 nm and 1064 nm both experimentally and numerically. This work opens the way for laser-written 3D LiNbO3 waveguide beam splitters as novel 3D nonlinear photonic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing

Ruiyun He, Irene Hernández-Palmero, Carolina Romero, Javier R. Vázquez de Aldana, and Feng Chen
Opt. Express 22(25) 31293-31298 (2014)

Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription

Yuechen Jia, Feng Chen, and Javier R. Vázquez de Aldana
Opt. Express 20(15) 16801-16806 (2012)

Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser

S. Bhardwaj, K. Mittholiya, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari
Appl. Opt. 56(20) 5692-5697 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2008).
  2. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [Crossref]
  3. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
    [Crossref]
  4. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
    [Crossref]
  5. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
    [Crossref]
  6. D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
    [Crossref]
  7. F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  8. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  10. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
    [Crossref]
  11. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  12. T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
    [Crossref]
  13. J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [Crossref]
  14. L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photon. Technol. Lett. 16(5), 1337–1339 (2004).
    [Crossref]
  15. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
    [Crossref]
  16. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
    [Crossref]
  17. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
    [Crossref] [PubMed]
  18. R. He, I. Hernández-Palmero, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing,” Opt. Express 22(25), 31293–31298 (2014).
    [Crossref] [PubMed]
  19. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
    [Crossref]
  20. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).
  21. T. Volk and M. Wohlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer, 2008).
  22. R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Opt. Mater. Express 3(9), 1378–1384 (2013).
    [Crossref]
  23. S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22(19), 23339–23348 (2014).
    [Crossref] [PubMed]
  24. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [Crossref]
  25. V. V. Atuchin and T. Khasanov, “High-accuracy contactless method for determination of chemical composition of lithium niobate crystals by their birefringence,” Opt. Spectrosc. 107(2), 212–216 (2009).
    [Crossref]
  26. RSoft Design Group, Computer software BandSLOVE, http://www.rsoftdesign.com
  27. R. He, I. Hernández-Palmero, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing,” Opt. Express 22(25), 31293–31298 (2014).
    [Crossref] [PubMed]

2015 (1)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

2014 (5)

2013 (1)

2011 (2)

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref] [PubMed]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

2009 (4)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

V. V. Atuchin and T. Khasanov, “High-accuracy contactless method for determination of chemical composition of lithium niobate crystals by their birefringence,” Opt. Spectrosc. 107(2), 212–216 (2009).
[Crossref]

2008 (2)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (2)

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

2006 (1)

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

2004 (2)

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photon. Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

1998 (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

1996 (1)

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[Crossref]

An, Q.

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

Atuchin, V.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Atuchin, V. V.

V. V. Atuchin and T. Khasanov, “High-accuracy contactless method for determination of chemical composition of lithium niobate crystals by their birefringence,” Opt. Spectrosc. 107(2), 212–216 (2009).
[Crossref]

Azanova, I. S.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Bookey, H. T.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Calmano, T.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

Castillo-Vega, G. R.

Cerullo, G.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Chen, F.

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Chiodo, N.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Chong, T. C.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photon. Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Davis, K. M.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[Crossref]

Denz, C.

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Gui, L.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photon. Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

He, R.

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Hernández-Palmero, I.

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Hirao, K.

Horn, W.

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Imbrock, J.

Jia, Y.

Kalabin, I. E.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Kar, A. K.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Khasanov, T.

V. V. Atuchin and T. Khasanov, “High-accuracy contactless method for determination of chemical composition of lithium niobate crystals by their birefringence,” Opt. Spectrosc. 107(2), 212–216 (2009).
[Crossref]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

Kroesen, S.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Min, Y. H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Miura, K.

Müller, S.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

Nolte, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Osellame, R.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[Crossref]

Psaila, N. D.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Rodenas, A.

Romero, C.

Ruske, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Shevtsov, D. I.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Sugimoto, N.

Taysin, I. F.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Thomson, R. R.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Vazquez de Aldana, J. R.

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Vázquez de Aldana, J. R.

Volynzev, A.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[Crossref]

Xu, B.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photon. Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Appl. Phys. B (2)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photon. Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

J. Appl. Phys. (2)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6482 (2002).
[Crossref]

Laser Photon. Rev. (1)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[Crossref]

Laser Photonics Rev. (2)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Photonics News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Opt. Spectrosc. (1)

V. V. Atuchin and T. Khasanov, “High-accuracy contactless method for determination of chemical composition of lithium niobate crystals by their birefringence,” Opt. Spectrosc. 107(2), 212–216 (2009).
[Crossref]

Phys. Status Solidi A (2)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Proc. SPIE (1)

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti-diffused proton-exchanged x-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Other (4)

G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2008).

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

T. Volk and M. Wohlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer, 2008).

RSoft Design Group, Computer software BandSLOVE, http://www.rsoftdesign.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic process of the laser-writing the LiNbO3 waveguide beam splitters.
Fig. 2
Fig. 2 The schematic plot of the end-face coupling system using a laser source at 632.8 nm/1064 nm.
Fig. 3
Fig. 3 The microscopic images of the cross section (left) and measured near-field intensity distributions at 632.8 nm (middle) and 1064 nm (right) of the straight waveguide WG1, 1 × 2 WG2 and 1 × 4 WG3 waveguide beam splitters along TM polarization. The dashed lines indicate the spatial locations of laser-induced tracks.
Fig. 4
Fig. 4 (a) The top-view of simulated light intensity profile after light propagating on the XY-plane and (b) the simulated beam profile evolution process of light propagating along the photonic structure at 632.8 nm on TM polarization for the 1 × 4 waveguide beam splitter WG3 by using FD-BPM code.
Fig. 5
Fig. 5 The Polar images of the output light power of WG1 (red squares), WG2 (blue circles) and WG3 (black triangles) and the corresponding fits (lines) at 632.8 nm with the input light power of 1.7 mW.

Tables (1)

Tables Icon

Table 1 The propagation losses (α) of the laser-written straight waveguide (WG1), 1 × 2 (WG2) and 1 × 4 (WG3) waveguide beam splitters on TM polarization at 632.8 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn si n 2 Θ m 2n

Metrics