Abstract

We introduce laser interference lithography (LIL) as a tool to fabricate hierarchical photonic nanostructures inspired by blue Morpho butterflies. For that, we utilize the interference pattern in vertical direction in addition to the conventional horizontal one. The vertical interference creates the lamellae by exploiting the back reflection from the substrate. The horizontal interference patterns the ridges of the hierarchical Christmas tree like structure. The artificial Morpho replica produced with this technique feature a brilliant blue iridescence up to an incident angle of 40°.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies

Radwanul Hasan Siddique, Silvia Diewald, Juerg Leuthold, and Hendrik Hölscher
Opt. Express 21(12) 14351-14361 (2013)

Detailed electromagnetic simulation for the structural color of butterfly wings

R. Todd Lee and Glenn S. Smith
Appl. Opt. 48(21) 4177-4190 (2009)

Morpho butterflies wings color modeled with lamellar grating theory

Boris Gralak, Gérard Tayeb, and Stefan Enoch
Opt. Express 9(11) 567-578 (2001)

References

  • View by:
  • |
  • |
  • |

  1. W. W. Ng, C.-S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Elect. Dev. 25(10), 1193–1200 (1978).
    [Crossref]
  2. N. N. Efremow, “A simple technique for modifying the profile of resist exposed by holographic lithography,” J. Vac. Sci. Tech. 19(4), 1234–1237 (1981).
    [Crossref]
  3. A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
    [Crossref]
  4. M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [Crossref] [PubMed]
  5. S. Brueck, “Optical and interferometric lithography-Nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
    [Crossref]
  6. J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
    [Crossref]
  7. M. Maldovan and E. L. Thomas, Periodic materials and interference lithography: for photonics, phononics and mechanics (John Wiley & Sons, 2009).
  8. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4(4), 568–580 (2010).
    [Crossref]
  9. H. van Wolferen and L. Abelmann, in Lithography: principles, processes and materials, edited by T. C. Hennessy, ed.(Nova Publishers, Hauppauge NY, USA, 2011) pp. 133–148, open Access.
  10. K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
    [Crossref]
  11. S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotech. 18(5), 055306 (2007).
    [Crossref]
  12. H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
    [Crossref]
  13. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
    [Crossref]
  14. F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
    [Crossref]
  15. J. H. Moon, J. Ford, and S. Yang, “Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography,” Polym. Adv. Tech. 17(2), 83–93 (2006).
    [Crossref]
  16. J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
    [Crossref]
  17. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
    [Crossref] [PubMed]
  18. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [Crossref] [PubMed]
  19. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
    [Crossref]
  20. B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
    [Crossref]
  21. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059 (1987).
    [Crossref] [PubMed]
  22. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486 (1987).
    [Crossref] [PubMed]
  23. A. R. Parker, “515 million years of structural colour,” J. Opt. A Pure Appl. Opt. 2(6), R15–R28 (2000).
    [Crossref]
  24. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  25. T. Starkey and P. Vukusic, “Light manipulation principles in biological photonic systems,” Nanophoton. 2(4), 289–307 (2013).
    [Crossref]
  26. L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
    [Crossref]
  27. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B Biol. Sci. 266(1427), 1403–1411 (1999).
    [Crossref]
  28. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B Biol. Sci. 269(1499), 1417–1421 (2002).
    [Crossref]
  29. R. H. Siddique, S. Diewald, J. Leuthold, and H. Hölscher, “Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies,” Opt. Express 21(12), 14351–14361 (2013).
    [Crossref] [PubMed]
  30. Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Mat. 3(2), 178–182 (2007).
    [Crossref]
  31. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
    [Crossref]
  32. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
    [Crossref]
  33. F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
    [Crossref]
  34. S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Env. Sci. 5(11), 9195–9216 (2012).
    [Crossref]
  35. MicroChemicals GmbH®, “Az® 1500-series,”.
  36. W. Menz, J. Mohr, and O. Paul, “Lithography,” in Microsystem Technology (Wiley-VCH Verlag GmbH, 2007) pp. 171–208.
  37. T. Bocksrocker, Technologien fur das lichtmanagement in organischen leuchtdioden, PhD thesis, Zugl.: Karlsruhe, Karlsruher Institut fur Technologie (KIT), Diss., 2013.
  38. R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
    [Crossref]
  39. H. A. Macleod, Thin-film optical filters (IOP Publishing Ltd, 1986).
    [Crossref]
  40. M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
    [Crossref]
  41. A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
    [Crossref]
  42. K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
    [Crossref]
  43. K. Chung and J. H. Shin, “Range and stability of structural colors generated by Morpho-inspired color reflectors,” J. Opt. Soc. Am. A 30(5), 962–968 (2013).
    [Crossref]
  44. S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. express 15(5), 2691–2701 (2007).
    [Crossref] [PubMed]
  45. S. Yoshioka, T. Nakano, Y. Nozue, and S. Kinoshita, “Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth,” J. R. Soc. Int. 5(21), 457–464 (2008).
    [Crossref]
  46. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
    [Crossref] [PubMed]
  47. A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Int. 6((Suppl 2)), S165–S184 (2009).
    [Crossref]
  48. S. Vignolini, E. Moyroud, B. J. Glover, and U. Steiner, “Analysing photonic structures in plants,” J. R. Soc. Int. 10(87), 20130394 (2013).
    [Crossref]

2015 (1)

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

2014 (1)

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

2013 (4)

2012 (4)

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Env. Sci. 5(11), 9195–9216 (2012).
[Crossref]

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

2011 (2)

B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
[Crossref]

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

2010 (2)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4(4), 568–580 (2010).
[Crossref]

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

2009 (1)

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Int. 6((Suppl 2)), S165–S184 (2009).
[Crossref]

2008 (1)

S. Yoshioka, T. Nakano, Y. Nozue, and S. Kinoshita, “Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth,” J. R. Soc. Int. 5(21), 457–464 (2008).
[Crossref]

2007 (5)

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Mat. 3(2), 178–182 (2007).
[Crossref]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotech. 18(5), 055306 (2007).
[Crossref]

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. express 15(5), 2691–2701 (2007).
[Crossref] [PubMed]

2006 (1)

J. H. Moon, J. Ford, and S. Yang, “Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography,” Polym. Adv. Tech. 17(2), 83–93 (2006).
[Crossref]

2005 (2)

S. Brueck, “Optical and interferometric lithography-Nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

2002 (3)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
[Crossref]

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
[Crossref]

2001 (1)

J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
[Crossref]

2000 (4)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

A. R. Parker, “515 million years of structural colour,” J. Opt. A Pure Appl. Opt. 2(6), R15–R28 (2000).
[Crossref]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

1999 (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

1998 (1)

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref] [PubMed]

1997 (1)

A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486 (1987).
[Crossref] [PubMed]

1981 (1)

N. N. Efremow, “A simple technique for modifying the profile of resist exposed by holographic lithography,” J. Vac. Sci. Tech. 19(4), 1234–1237 (1981).
[Crossref]

1978 (1)

W. W. Ng, C.-S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Elect. Dev. 25(10), 1193–1200 (1978).
[Crossref]

Abelmann, L.

H. van Wolferen and L. Abelmann, in Lithography: principles, processes and materials, edited by T. C. Hennessy, ed.(Nova Publishers, Hauppauge NY, USA, 2011) pp. 133–148, open Access.

Agio, M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
[Crossref]

Akai-kasaya, M.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Baek, I. H.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Bakowsky, U.

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

Bartels, C.

R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
[Crossref]

Baumberg, J. J.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

Bawendi, M. G.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
[Crossref]

Bläsi, B.

B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
[Crossref]

Bocksrocker, T.

T. Bocksrocker, Technologien fur das lichtmanagement in organischen leuchtdioden, PhD thesis, Zugl.: Karlsruhe, Karlsruher Institut fur Technologie (KIT), Diss., 2013.

Bouadma, N.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
[Crossref]

Brady, P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Int. 6((Suppl 2)), S165–S184 (2009).
[Crossref]

Brueck, S.

S. Brueck, “Optical and interferometric lithography-Nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

Busch, K.

J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
[Crossref]

Campbell, M.

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Carter, J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Cho, D. J.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Cho, K. S.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Chow, E.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref] [PubMed]

Chung, K.

K. Chung and J. H. Shin, “Range and stability of structural colors generated by Morpho-inspired color reflectors,” J. Opt. Soc. Am. A 30(5), 962–968 (2013).
[Crossref]

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Cournoyer, J. R.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Decker, J.

A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
[Crossref]

Dellieu, L.

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

Deng, T.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

Denning, R.

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Deparis, O.

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

Diewald, S.

Dovidenko, K.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Efremow, N. N.

N. N. Efremow, “A simple technique for modifying the profile of resist exposed by holographic lithography,” J. Vac. Sci. Tech. 19(4), 1234–1237 (1981).
[Crossref]

Eisler, H.-J.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
[Crossref]

Faisal, A.

R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
[Crossref]

Fan, T.

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Env. Sci. 5(11), 9195–9216 (2012).
[Crossref]

Farhoud, M.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Fernandez, A.

A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
[Crossref]

Ferrera, J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Ford, J.

J. H. Moon, J. Ford, and S. Yang, “Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography,” Polym. Adv. Tech. 17(2), 83–93 (2006).
[Crossref]

Gao, X.

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Mat. 3(2), 178–182 (2007).
[Crossref]

Ghiradella, H.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Ghiradella, H. T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

Glover, B. J.

S. Vignolini, E. Moyroud, B. J. Glover, and U. Steiner, “Analysing photonic structures in plants,” J. R. Soc. Int. 10(87), 20130394 (2013).
[Crossref]

Gorishnyy, T.

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Gsele, U.

J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
[Crossref]

Guo, X.

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Env. Sci. 5(11), 9195–9216 (2012).
[Crossref]

Han, M. G.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Harrison, M.

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Hauser, H.

B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
[Crossref]

He, G.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Heo, C.-J.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Herman, S.

A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
[Crossref]

Hietala, V.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref] [PubMed]

Höhn, O.

B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
[Crossref]

Hölscher, H.

R. H. Siddique, S. Diewald, J. Leuthold, and H. Hölscher, “Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies,” Opt. Express 21(12), 14351–14361 (2013).
[Crossref] [PubMed]

R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
[Crossref]

Hong, C.-S.

W. W. Ng, C.-S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Elect. Dev. 25(10), 1193–1200 (1978).
[Crossref]

Huang, F.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

Hünig, R.

R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
[Crossref]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Jang, J.-H.

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Jiang, L.

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Mat. 3(2), 178–182 (2007).
[Crossref]

Jin, Y.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Joannopoulos, J. D.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486 (1987).
[Crossref] [PubMed]

Kafesaki, M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
[Crossref]

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

Kim, J.-Y.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotech. 18(5), 055306 (2007).
[Crossref]

Kim, K.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Kim, S.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Kim, S. H.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotech. 18(5), 055306 (2007).
[Crossref]

Kinoshita, S.

S. Yoshioka, T. Nakano, Y. Nozue, and S. Kinoshita, “Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth,” J. R. Soc. Int. 5(21), 457–464 (2008).
[Crossref]

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. express 15(5), 2691–2701 (2007).
[Crossref] [PubMed]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

Klimov, V.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
[Crossref]

Koh, C.

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Kolle, M.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

Kooi, S.

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Kübler, V.

B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
[Crossref]

Kuwahara, Y.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Kwon, M.-K.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotech. 18(5), 055306 (2007).
[Crossref]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Le Gouezigou, L.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
[Crossref]

Lee, H.-S.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Lee, J.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Lee, K.-D.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotech. 18(5), 055306 (2007).
[Crossref]

Lee, S.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Lee, S. Y.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Lehr, C.-M.

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

Lemmer, U.

R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
[Crossref]

Leuthold, J.

Li, P.

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

Li, S.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Lim, H.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Lin, S.-Y.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref] [PubMed]

Lipson, R. H.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4(4), 568–580 (2010).
[Crossref]

Lochtefeld, A. J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Lou, S.

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Env. Sci. 5(11), 9195–9216 (2012).
[Crossref]

Lu, C.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4(4), 568–580 (2010).
[Crossref]

Luo, Z.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin-film optical filters (IOP Publishing Ltd, 1986).
[Crossref]

Mahajan, S.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

Maldovan, M.

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

M. Maldovan and E. L. Thomas, Periodic materials and interference lithography: for photonics, phononics and mechanics (John Wiley & Sons, 2009).

Mandal, P.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Mathur, S.

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

Matthias, S.

J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
[Crossref]

Mcklich, F.

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

Menz, W.

W. Menz, J. Mohr, and O. Paul, “Lithography,” in Microsystem Technology (Wiley-VCH Verlag GmbH, 2007) pp. 171–208.

Mller, F.

J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
[Crossref]

Mohr, J.

W. Menz, J. Mohr, and O. Paul, “Lithography,” in Microsystem Technology (Wiley-VCH Verlag GmbH, 2007) pp. 171–208.

Moon, J. H.

J. H. Moon, J. Ford, and S. Yang, “Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography,” Polym. Adv. Tech. 17(2), 83–93 (2006).
[Crossref]

Morris, W. G.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

Moyroud, E.

S. Vignolini, E. Moyroud, B. J. Glover, and U. Steiner, “Analysing photonic structures in plants,” J. R. Soc. Int. 10(87), 20130394 (2013).
[Crossref]

Murase, J.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Murphy, T. E.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Nakano, T.

S. Yoshioka, T. Nakano, Y. Nozue, and S. Kinoshita, “Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth,” J. R. Soc. Int. 5(21), 457–464 (2008).
[Crossref]

Ng, W. W.

W. W. Ng, C.-S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Elect. Dev. 25(10), 1193–1200 (1978).
[Crossref]

Ninomiya, T.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Noda, S.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Noguchi, S.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Nozue, Y.

S. Yoshioka, T. Nakano, Y. Nozue, and S. Kinoshita, “Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth,” J. R. Soc. Int. 5(21), 457–464 (2008).
[Crossref]

Olson, E.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Park, N.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Park, S.-J.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotech. 18(5), 055306 (2007).
[Crossref]

Parker, A. R.

A. R. Parker, “515 million years of structural colour,” J. Opt. A Pure Appl. Opt. 2(6), R15–R28 (2000).
[Crossref]

Paul, O.

W. Menz, J. Mohr, and O. Paul, “Lithography,” in Microsystem Technology (Wiley-VCH Verlag GmbH, 2007) pp. 171–208.

Perry, M.

A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
[Crossref]

Peters, M.

B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
[Crossref]

Phillion, D.

A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
[Crossref]

Potyrailo, R. A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Pris, A. D.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

Ross, C. A.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Rotermund, F.

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Saito, A.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Salgard-Cunha, P. M.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Sarrazin, M.

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

Sasaki, M.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Schattenburg, M. L.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Scherer, M. R. J.

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

Schilling, J.

J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
[Crossref]

Schultz, T. D.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Int. 6((Suppl 2)), S165–S184 (2009).
[Crossref]

Seago, A. E.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Int. 6((Suppl 2)), S165–S184 (2009).
[Crossref]

Shang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Sharp, D.

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Shen, H.

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

Shen, Q.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Shi, X.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Shibuya, T.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Shim, J. W.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Shin, J. H.

K. Chung and J. H. Shin, “Range and stability of structural colors generated by Morpho-inspired color reflectors,” J. Opt. Soc. Am. A 30(5), 962–968 (2013).
[Crossref]

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Siddique, R. H.

R. H. Siddique, S. Diewald, J. Leuthold, and H. Hölscher, “Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies,” Opt. Express 21(12), 14351–14361 (2013).
[Crossref] [PubMed]

R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
[Crossref]

Simonis, P.

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

Smith, H. I.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
[Crossref]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Song, C.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Soukoulis, C. M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
[Crossref]

Starkey, T.

T. Starkey and P. Vukusic, “Light manipulation principles in biological photonic systems,” Nanophoton. 2(4), 289–307 (2013).
[Crossref]

Steiner, U.

S. Vignolini, E. Moyroud, B. J. Glover, and U. Steiner, “Analysing photonic structures in plants,” J. R. Soc. Int. 10(87), 20130394 (2013).
[Crossref]

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

Sundar, V. C.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
[Crossref]

Surman, C.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

Sweeney, D.

A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
[Crossref]

Talneau, A.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
[Crossref]

Tao, P.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Thomas, E.

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Thomas, E. L.

M. Maldovan and E. L. Thomas, Periodic materials and interference lithography: for photonics, phononics and mechanics (John Wiley & Sons, 2009).

Turberfield, A.

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Ullal, C.

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Utturkar, Y.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

van Wolferen, H.

H. van Wolferen and L. Abelmann, in Lithography: principles, processes and materials, edited by T. C. Hennessy, ed.(Nova Publishers, Hauppauge NY, USA, 2011) pp. 133–148, open Access.

Vert, A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

Vertiatchikh, A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

Vigneron, J. P.

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

Vigneron, J.-P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Int. 6((Suppl 2)), S165–S184 (2009).
[Crossref]

Vignolini, S.

S. Vignolini, E. Moyroud, B. J. Glover, and U. Steiner, “Analysing photonic structures in plants,” J. R. Soc. Int. 10(87), 20130394 (2013).
[Crossref]

Villeneuve, P. R.

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref] [PubMed]

Vukusic, P.

T. Starkey and P. Vukusic, “Light manipulation principles in biological photonic systems,” Nanophoton. 2(4), 289–307 (2013).
[Crossref]

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Wacker, I.

R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
[Crossref]

Walsh, M.

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
[Crossref]

Wang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Watanabe, H.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Wehrspohn, R. B.

J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
[Crossref]

Wolf, A. J.

B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
[Crossref]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059 (1987).
[Crossref] [PubMed]

Yang, S.

J. H. Moon, J. Ford, and S. Yang, “Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography,” Polym. Adv. Tech. 17(2), 83–93 (2006).
[Crossref]

Yang, S.-M.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Yariv, A.

W. W. Ng, C.-S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Elect. Dev. 25(10), 1193–1200 (1978).
[Crossref]

Yonezawa, M.

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Yoshioka, S.

S. Yoshioka, T. Nakano, Y. Nozue, and S. Kinoshita, “Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth,” J. R. Soc. Int. 5(21), 457–464 (2008).
[Crossref]

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. express 15(5), 2691–2701 (2007).
[Crossref] [PubMed]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

Yu, F.

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

Yu, S.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Zalyubovskiy, S.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

Zhang, D.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Env. Sci. 5(11), 9195–9216 (2012).
[Crossref]

Zhang, F.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Zhang, P.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Zhang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

Zheng, Y.

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Mat. 3(2), 178–182 (2007).
[Crossref]

Adv. Funct. Mater. (1)

J.-H. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[Crossref]

Adv. Mat. (2)

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared detection based on localized modification of Morpho butterfly wings,” Adv. Mat. 27, 10771082 (2015).
[Crossref]

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings,” Adv. Mat. 24(18), 2375–2379 (2012).
[Crossref]

Appl. Phys. Lett. (3)

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,” Appl. Phys. Lett. 80(4), 547–549 (2002).
[Crossref]

H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, “Color-selective semiconductor nanocrystal laser,” Appl. Phys. Lett. 80(24), 4614–4616(2002).
[Crossref]

J. Schilling, F. Mller, S. Matthias, R. B. Wehrspohn, U. Gsele, and K. Busch, “Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter,” Appl. Phys. Lett. 78(9), 1180–1182 (2001).
[Crossref]

Biomacromol. (1)

F. Yu, F. Mcklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromol. 6(3), 1160–1167 (2005).
[Crossref]

Energy Env. Sci. (1)

S. Lou, X. Guo, T. Fan, and D. Zhang, “Butterflies: inspiration for solar cells and sunlight water-splitting catalysts,” Energy Env. Sci. 5(11), 9195–9216 (2012).
[Crossref]

Energy Proc. (1)

B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. J. Wolf, “Photon management structures originated by interference lithography,” Energy Proc. 8, 712–718 (2011).
[Crossref]

IEEE Trans. Elect. Dev. (1)

W. W. Ng, C.-S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Elect. Dev. 25(10), 1193–1200 (1978).
[Crossref]

J. Appl. Phys. (1)

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, “A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera),” J. Appl. Phys. 116(2), 024701 (2014).
[Crossref]

J. Opt. A Pure Appl. Opt. (1)

A. R. Parker, “515 million years of structural colour,” J. Opt. A Pure Appl. Opt. 2(6), R15–R28 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. R. Soc. Int. (3)

S. Yoshioka, T. Nakano, Y. Nozue, and S. Kinoshita, “Coloration using higher order optical interference in the wing pattern of the Madagascan sunset moth,” J. R. Soc. Int. 5(21), 457–464 (2008).
[Crossref]

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Int. 6((Suppl 2)), S165–S184 (2009).
[Crossref]

S. Vignolini, E. Moyroud, B. J. Glover, and U. Steiner, “Analysing photonic structures in plants,” J. R. Soc. Int. 10(87), 20130394 (2013).
[Crossref]

J. Vac. Sci. Tech. (1)

N. N. Efremow, “A simple technique for modifying the profile of resist exposed by holographic lithography,” J. Vac. Sci. Tech. 19(4), 1234–1237 (1981).
[Crossref]

J. Vac. Sci. Tech. B (2)

A. Fernandez, J. Decker, S. Herman, D. Phillion, D. Sweeney, and M. Perry, “Methods for fabricating arrays of holes using interference lithography,” J. Vac. Sci. Tech. B 15(6), 2439–2443 (1997).
[Crossref]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Tech. B 17(6), 3182–3185 (1999).
[Crossref]

Laser Photon. Rev. (1)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photon. Rev. 4(4), 568–580 (2010).
[Crossref]

Nanophoton. (1)

T. Starkey and P. Vukusic, “Light manipulation principles in biological photonic systems,” Nanophoton. 2(4), 289–307 (2013).
[Crossref]

Nanotech. (1)

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotech. 18(5), 055306 (2007).
[Crossref]

Nat. Nanotech. (1)

M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotech. 5(7), 511–515 (2010).
[Crossref]

Nat. Photon. (2)

R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photon. 1(2), 123–128 (2007).
[Crossref]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photon. 6(3), 195–200 (2012).
[Crossref]

Nature (4)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404(6777), 457 (2000).
[Crossref] [PubMed]

M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

K. S. Cho, P. Mandal, K. Kim, I. H. Baek, S. Lee, H. Lim, D. J. Cho, S. Kim, J. Lee, and F. Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,” Opt. Commun. 284(10), 2608–2612 (2011).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486 (1987).
[Crossref] [PubMed]

Polym. Adv. Tech. (1)

J. H. Moon, J. Ford, and S. Yang, “Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography,” Polym. Adv. Tech. 17(2), 83–93 (2006).
[Crossref]

Proc. IEEE (1)

S. Brueck, “Optical and interferometric lithography-Nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

Proc. R. Soc. B Biol. Sci. (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. B Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

Proc. SPIE (1)

A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-kasaya, and Y. Kuwahara, “High-throughput reproduction of the Morpho butterfly’s specific high contrast blue,” Proc. SPIE 8339, 83390C (2012).
[Crossref]

Science (1)

S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref] [PubMed]

Soft Mat. (1)

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Mat. 3(2), 178–182 (2007).
[Crossref]

Other (7)

MicroChemicals GmbH®, “Az® 1500-series,”.

W. Menz, J. Mohr, and O. Paul, “Lithography,” in Microsystem Technology (Wiley-VCH Verlag GmbH, 2007) pp. 171–208.

T. Bocksrocker, Technologien fur das lichtmanagement in organischen leuchtdioden, PhD thesis, Zugl.: Karlsruhe, Karlsruher Institut fur Technologie (KIT), Diss., 2013.

R. H. Siddique, A. Faisal, R. Hünig, C. Bartels, I. Wacker, U. Lemmer, and H. Hölscher, “Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly,” Proc. SPIE9187, The Nature of Light: Light in Nature V, 91870E (2014).
[Crossref]

H. A. Macleod, Thin-film optical filters (IOP Publishing Ltd, 1986).
[Crossref]

H. van Wolferen and L. Abelmann, in Lithography: principles, processes and materials, edited by T. C. Hennessy, ed.(Nova Publishers, Hauppauge NY, USA, 2011) pp. 133–148, open Access.

M. Maldovan and E. L. Thomas, Periodic materials and interference lithography: for photonics, phononics and mechanics (John Wiley & Sons, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the wave vectors for a dual beam interference. (b) The calculated dual beam standing wave patterns in the 500 nm thick resist with and without back reflection from the substrate. If the reflection factor R is close to 1, the vertical standing waves create multilayer stacks of air and polymer. The vertical standing waves, however, disappear if the back reflection intensity is 0 (R = 0).
Fig. 2
Fig. 2 (a) Flow diagram of the fabrication process of hierarchical optical structures in Morpho butterfly scale using dual beam laser interference lithography and compare it to a regular dual beam LIL process. (b) The schematic of the lithography setup: BS – Beam Splitter, M – Mirror, QP – Quartz Plate, L – Lens, PD – Photodetector, P – Pinhole. (c) The cross-sectional view of the fabricated Morpho sample (R = 1) shows the tapered shaped polymer/air multilayers. The other considered fabricated sample of triangular grating (R = 0) is shown below for comparison.
Fig. 3
Fig. 3 The optical appearance of the fabricated sample exhibits a bright blue iridescence as Morpho butterfly wing till 40° of incident angle. The replicated structure is compared to normal triangular grating structures to demonstrate the difference in optical property. The SEM images of both structures are shown for comparison.
Fig. 4
Fig. 4 (a) The reflection spectra of the fabricated samples show a reflection of 30 % in the blue regime for normal incidence. The peak reflection of 33 % is observed at a wavelength of 440 nm. The reflection is only about 2 % for the triangular grating without lamellae for the same wavelength. The theoretical reflectance spectrum for a five-fold stack of air and resist with similar refractive indices is shown below. The positions of the reflection peaks correspond to the experimental ones. (b) The angle resolved reflection spectra reveals the high reflection of blue light for angles up to 40° for wavelengths of 415 nm, 430 nm and 450 nm. The reflection increases to 42 % at an angle of 35° for the wavelength of 415 nm.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E h ( r , t ) = E 1 e i ( k 1 r ω t ) + E 2 e i ( k 2 r ω t )
E 1 = E 0 n ^ , k 1 = 2 π n λ ( sin θ , 0 , cos θ )
E 2 = E 0 e i Δ φ n ^ , k 2 = 2 π n λ ( sin θ , 0 , cos θ )
I h ( r ) = | E h ( r ) | 2 = E h ( r ) E h * ( r ) = 2 I 0 ( 1 + cos ( 4 π λ sin θ x Δ φ ) )
P h = λ 2 sin θ
E v ( r , t ) = E i 1 e i ( k i 1 r ω t ) + E i 2 e i ( k i 2 r ω t ) + E r 1 e i ( k r 1 r ω t ) + E r 2 e i ( k r 2 r ω t )
E i 1 = E 0 n ^ , k i 1 = 2 π n m λ ( sin θ m , 0 , cos θ m )
E i 2 = E 0 e i ( Δ φ ) n ^ , k i 2 = 2 π n m λ ( sin θ m , 0 , cos θ m )
E r 1 = r E 0 e i π n ^ , k r 1 = 2 π n m λ ( sin θ m , 0 , cos θ m )
E r 2 = r E 0 e i ( Δ φ π ) n ^ , k r 2 = 2 π n m λ ( sin θ m , 0 , cos θ m )
I v ( r ) = | E v ( r ) | 2 = E v ( r ) E v * ( r ) = 2 ( 1 + R ) | E 0 | 2 + 2 Re ( E i 1 E i 2 * ) cos [ ( k i 1 k i 2 ) r ] 2 Im ( E i 1 E i 2 * ) sin [ ( k i 1 k i 2 ) r ] + 2 Re ( E i 1 E r 1 * ) cos [ ( k i 1 k r 1 ) r ] 2 Im ( E i 1 E r 1 * ) sin [ ( k i 1 k r 1 ) r ] + 2 Re ( E i 1 E r 2 * ) cos [ ( k i 1 k r 2 ) r ] 2 Im ( E i 1 E r 2 * ) sin [ ( k i 1 k r 2 ) r ] + 2 Re ( E i 2 E r 2 * ) cos [ ( k i 2 k r 2 ) r ] 2 Im ( E i 2 E r 2 * ) sin [ ( k i 2 k r 2 ) r ] + 2 Re ( E i 2 E r 1 * ) cos [ ( k i 2 k r 1 ) r ] 2 Im ( E i 2 E r 1 * ) sin [ ( k i 2 k r 1 ) r ] + 2 Re ( E r 1 E r 2 * ) cos [ ( k r 1 k r 2 ) r ] 2 Im ( E r 1 E r 2 * ) sin [ ( k r 1 k r 2 ) r ] = 2 I 0 [ ( 1 + R R cos ( 4 π n m λ cos θ m z ) ) ( 1 + cos ( 4 π n m λ cos θ m x Δ φ ) ) ]
P v = λ 2 n m cos ( sin 1 ( sin θ / n m ) )
I ( r ) = 2 I 0 [ 1 + cos ( 4 π λ sin θ x Δ φ ) + ( 1 + R 2 R cos ( 4 π n m λ cos θ m z ) ) ( 1 + cos ( 4 π n m λ sin θ m x Δ φ ) ) ]

Metrics