Abstract

We developed bright deep-red persistent phosphors of Cr3+-Eu3+ co-doped Gd3Al5-xGaxO12 garnet (GAGG:Cr3+-Eu3+), in which only Cr3+ ion shows emission bands centered at 730 nm after ceasing UV illumination and Eu3+ ion acts as an excellent electron trap capturing one electron to be Eu2+ with tunable trap depth by varying conduction band with Ga3+ content, x. The persistent radiance of the GGG:Cr3+-Eu3+ (x = 5) sample at 1 h after ceasing UV light is approximately 25 times higher than that of the Cr3+ singly doped GGG sample, and is over 6 times higher than that of the widely used ZnGa2O4:Cr3+ red persistent phosphor.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evidence of valence state change of Ce3+ and Cr3+ during UV charging process in Y3Al2Ga3O12 persistent phosphors

Jumpei Ueda, Misaki Katayama, Kazuki Asami, Jian Xu, Yasuhiro Inada, and Setsuhisa Tanabe
Opt. Mater. Express 7(7) 2471-2476 (2017)

Theoretical method to select appropriate codopants as efficient foreign electron traps for Lu3Al2Ga3O12:Tb3+/Ln3+ persistent phosphor

Zhenbin Wang, Wenxiang Wang, Jiachi Zhang, Xin Ji, Jianpeng Li, Jian Liang, Shanglong Peng, Zhipeng Ci, and Yuhua Wang
Opt. Mater. Express 6(4) 1186-1197 (2016)

Persistent luminescence properties of Cr3+-Sm3+ activated LaAlO3 perovskite

Yumiko Katayama, Hiroaki Kobayashi, Jumpei Ueda, Bruno Viana, and Setsuhisa Tanabe
Opt. Mater. Express 6(5) 1500-1505 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
    [Crossref]
  2. K. Van Den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
    [Crossref]
  3. S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Adv. 4(102), 58674–58698 (2014).
    [Crossref]
  4. Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
    [Crossref]
  5. J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 0426022011).
    [Crossref]
  6. J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
    [Crossref]
  7. J. Ueda, K. Kuroishi, and S. Tanabe, “Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
    [Crossref]
  8. J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102(2011).
    [Crossref] [PubMed]
  9. J. Ueda, K. Aishima, and S. Tanabe, “Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 0, 1, 2, 3),” Opt. Mater. 35(11), 1952–1957 (2013).
    [Crossref]
  10. J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5-xGaxO12:Cr3+: a novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
    [Crossref]
  11. Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1-xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C. 1(47), 7849–7855 (2013).
    [Crossref]
  12. Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem.C. 2(28), 5502–5509 (2014).
    [Crossref]
  13. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
    [Crossref] [PubMed]
  14. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  15. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
    [Crossref] [PubMed]
  16. P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter 15(49), 8417–8434 (2003).
    [Crossref]
  17. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
    [Crossref]
  18. P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
    [Crossref]
  19. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  20. F. T. You, A. J. J. Bos, Q. F. Shi, S. H. Huang, and P. Dorenbos, “Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12,” Phys. Rev. B 85(11), 115101 (2012).
    [Crossref]
  21. G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200(1–2), 17–18 (1993).
  22. J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. (to be published).
  23. G. Blasse and A. Bril, “Structure and Eu3+-fluorescence of lithium and sodium lanthanide silicates and germinates,” J. Inorg. Nucl. Chem. 29(9), 2231–2241 (1967).
    [Crossref]
  24. H. Forest and G. Ban, “Evidence for 2 symmetry sites in Y2O3-Eu+3,” J. Electrochem. Soc. 115(3), C64 (1968).
  25. W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S and LaOCl,” J. Chem. Phys. 52(12), 6364 (1970).
    [Crossref]
  26. J. Ueda and S. Tanabe, “Preparation and optical property of glass ceramics containing ruby crystals,” J. Am. Ceram. Soc. 93(10), 3084–3087 (2010).
    [Crossref]
  27. Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express 6(5), 052602 (2013).
    [Crossref]
  28. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
    [Crossref]
  29. X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
    [Crossref]

2015 (1)

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5-xGaxO12:Cr3+: a novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

2014 (6)

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Adv. 4(102), 58674–58698 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem.C. 2(28), 5502–5509 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

2013 (5)

J. Ueda, K. Aishima, and S. Tanabe, “Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 0, 1, 2, 3),” Opt. Mater. 35(11), 1952–1957 (2013).
[Crossref]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
[Crossref]

K. Van Den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1-xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C. 1(47), 7849–7855 (2013).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

2012 (1)

F. T. You, A. J. J. Bos, Q. F. Shi, S. H. Huang, and P. Dorenbos, “Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12,” Phys. Rev. B 85(11), 115101 (2012).
[Crossref]

2011 (4)

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102(2011).
[Crossref] [PubMed]

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 0426022011).
[Crossref]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2010 (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

J. Ueda and S. Tanabe, “Preparation and optical property of glass ceramics containing ruby crystals,” J. Am. Ceram. Soc. 93(10), 3084–3087 (2010).
[Crossref]

2005 (1)

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

2003 (2)

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter 15(49), 8417–8434 (2003).
[Crossref]

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

1997 (1)

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1993 (1)

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200(1–2), 17–18 (1993).

1970 (1)

W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S and LaOCl,” J. Chem. Phys. 52(12), 6364 (1970).
[Crossref]

1968 (1)

H. Forest and G. Ban, “Evidence for 2 symmetry sites in Y2O3-Eu+3,” J. Electrochem. Soc. 115(3), C64 (1968).

1967 (1)

G. Blasse and A. Bril, “Structure and Eu3+-fluorescence of lithium and sodium lanthanide silicates and germinates,” J. Inorg. Nucl. Chem. 29(9), 2231–2241 (1967).
[Crossref]

Aishima, K.

J. Ueda, K. Aishima, and S. Tanabe, “Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 0, 1, 2, 3),” Opt. Mater. 35(11), 1952–1957 (2013).
[Crossref]

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 0426022011).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Ban, G.

H. Forest and G. Ban, “Evidence for 2 symmetry sites in Y2O3-Eu+3,” J. Electrochem. Soc. 115(3), C64 (1968).

Bessière, A.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Blasse, G.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200(1–2), 17–18 (1993).

G. Blasse and A. Bril, “Structure and Eu3+-fluorescence of lithium and sodium lanthanide silicates and germinates,” J. Inorg. Nucl. Chem. 29(9), 2231–2241 (1967).
[Crossref]

Bos, A. J. J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

F. T. You, A. J. J. Bos, Q. F. Shi, S. H. Huang, and P. Dorenbos, “Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12,” Phys. Rev. B 85(11), 115101 (2012).
[Crossref]

Bril, A.

G. Blasse and A. Bril, “Structure and Eu3+-fluorescence of lithium and sodium lanthanide silicates and germinates,” J. Inorg. Nucl. Chem. 29(9), 2231–2241 (1967).
[Crossref]

Dorenbos, P.

Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem.C. 2(28), 5502–5509 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
[Crossref]

F. T. You, A. J. J. Bos, Q. F. Shi, S. H. Huang, and P. Dorenbos, “Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12,” Phys. Rev. B 85(11), 115101 (2012).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter 15(49), 8417–8434 (2003).
[Crossref]

Fonger, W. H.

W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S and LaOCl,” J. Chem. Phys. 52(12), 6364 (1970).
[Crossref]

Forest, H.

H. Forest and G. Ban, “Evidence for 2 symmetry sites in Y2O3-Eu+3,” J. Electrochem. Soc. 115(3), C64 (1968).

Gourier, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Grabmaier, B. C.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200(1–2), 17–18 (1993).

Huang, S. H.

F. T. You, A. J. J. Bos, Q. F. Shi, S. H. Huang, and P. Dorenbos, “Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12,” Phys. Rev. B 85(11), 115101 (2012).
[Crossref]

Jacquart, S.

Katayama, Y.

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Kuroishi, K.

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. (to be published).

Lecointre, A.

Lin, Y.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Liu, F.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Lu, Y.-Y.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Maldiney, T.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Matsuzawa, T.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Nakanishi, T.

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102(2011).
[Crossref] [PubMed]

Nishiura, S.

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 0426022011).
[Crossref]

Ostertag, M.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200(1–2), 17–18 (1993).

Pan, Z.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Poelman, D.

K. Van Den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Priolkar, K.

Richard, C.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Scherman, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Sharma, S. K.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Shi, Q. F.

F. T. You, A. J. J. Bos, Q. F. Shi, S. H. Huang, and P. Dorenbos, “Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12,” Phys. Rev. B 85(11), 115101 (2012).
[Crossref]

Singh, S. K.

S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Adv. 4(102), 58674–58698 (2014).
[Crossref]

Smet, P. F.

K. Van Den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Struck, C. W.

W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S and LaOCl,” J. Chem. Phys. 52(12), 6364 (1970).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5-xGaxO12:Cr3+: a novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem.C. 2(28), 5502–5509 (2014).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

J. Ueda, K. Aishima, and S. Tanabe, “Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 0, 1, 2, 3),” Opt. Mater. 35(11), 1952–1957 (2013).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1-xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C. 1(47), 7849–7855 (2013).
[Crossref]

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102(2011).
[Crossref] [PubMed]

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 0426022011).
[Crossref]

J. Ueda and S. Tanabe, “Preparation and optical property of glass ceramics containing ruby crystals,” J. Am. Ceram. Soc. 93(10), 3084–3087 (2010).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. (to be published).

Tang, Z.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Teston, E.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Ueda, J.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5-xGaxO12:Cr3+: a novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem.C. 2(28), 5502–5509 (2014).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

J. Ueda, K. Aishima, and S. Tanabe, “Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 0, 1, 2, 3),” Opt. Mater. 35(11), 1952–1957 (2013).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1-xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C. 1(47), 7849–7855 (2013).
[Crossref]

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102(2011).
[Crossref] [PubMed]

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 0426022011).
[Crossref]

J. Ueda and S. Tanabe, “Preparation and optical property of glass ceramics containing ruby crystals,” J. Am. Ceram. Soc. 93(10), 3084–3087 (2010).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. (to be published).

Van Den Eeckhout, K.

K. Van Den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Viana, B.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5-xGaxO12:Cr3+: a novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Wang, X.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Xu, J.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5-xGaxO12:Cr3+: a novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. (to be published).

Yamamoto, H.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
[Crossref]

You, F. T.

F. T. You, A. J. J. Bos, Q. F. Shi, S. H. Huang, and P. Dorenbos, “Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12,” Phys. Rev. B 85(11), 115101 (2012).
[Crossref]

Zhang, Z.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Zhuang, Y.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5-xGaxO12:Cr3+: a novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem.C. 2(28), 5502–5509 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1-xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C. 1(47), 7849–7855 (2013).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

Appl. Phys. Express (4)

J. Ueda, K. Aishima, S. Nishiura, and S. Tanabe, “Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 ceramics,” Appl. Phys. Express 4(4), 0426022011).
[Crossref]

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5-xGaxO12:Cr3+: a novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

Appl. Phys. Lett. (1)

J. Ueda, K. Kuroishi, and S. Tanabe, “Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light,” Appl. Phys. Lett. 104(10), 101904 (2014).
[Crossref]

J. Alloys Compd. (1)

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200(1–2), 17–18 (1993).

J. Am. Ceram. Soc. (1)

J. Ueda and S. Tanabe, “Preparation and optical property of glass ceramics containing ruby crystals,” J. Am. Ceram. Soc. 93(10), 3084–3087 (2010).
[Crossref]

J. Appl. Phys. (1)

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110(5), 053102(2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S and LaOCl,” J. Chem. Phys. 52(12), 6364 (1970).
[Crossref]

J. Electrochem. Soc. (3)

H. Forest and G. Ban, “Evidence for 2 symmetry sites in Y2O3-Eu+3,” J. Electrochem. Soc. 115(3), C64 (1968).

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

J. Inorg. Nucl. Chem. (1)

G. Blasse and A. Bril, “Structure and Eu3+-fluorescence of lithium and sodium lanthanide silicates and germinates,” J. Inorg. Nucl. Chem. 29(9), 2231–2241 (1967).
[Crossref]

J. Lumin. (2)

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. 72–74, 287–289 (1997).
[Crossref]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
[Crossref]

J. Mater. Chem. C. (1)

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1-xAlx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C. 1(47), 7849–7855 (2013).
[Crossref]

J. Mater. Chem.C. (1)

Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem.C. 2(28), 5502–5509 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter 15(49), 8417–8434 (2003).
[Crossref]

Mater. Chem. Phys. (1)

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Materials (Basel) (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

K. Van Den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: a review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Nat. Mater. (2)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (2)

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

J. Ueda, K. Aishima, and S. Tanabe, “Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 0, 1, 2, 3),” Opt. Mater. 35(11), 1952–1957 (2013).
[Crossref]

Phys. Rev. B (1)

F. T. You, A. J. J. Bos, Q. F. Shi, S. H. Huang, and P. Dorenbos, “Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12,” Phys. Rev. B 85(11), 115101 (2012).
[Crossref]

RSC Adv. (1)

S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Adv. 4(102), 58674–58698 (2014).
[Crossref]

Other (1)

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) PL and (b) PersL spectra of the GAGG:Cr3+-Eu3+ transparent ceramic (x = 3).
Fig. 2
Fig. 2 (a) In-line optical transmittance and photograph of GAGG:Cr3+-Eu3+ transparent ceramics (thickness of 1 mm) with different Ga3+ contents as well as SEM observations of the (b) polished surface (c) fractured surface of the GAGG:Cr3+-Eu3+ (x = 3) transparent ceramic.
Fig. 3
Fig. 3 Photographs of the GAGG:Cr3+-Eu3+ transparent ceramics (thickness of 1 mm) with different Ga3+ contents (x = 3, 4, 5) (a) under UV (254 nm) lamp (exposure of camera: 0.05 s) and (b) 30 s (c) 60 s after ceasing UV illumination (exposure of camera: 10 s), respectively. (d) persistent decay curves of the GAGG:Cr3+-Eu3+ transparent ceramic phosphors with different Ga3+ contents
Fig. 4
Fig. 4 (a) Thermoluminescence (TL) glow curves of the GAGG:Cr3+-Eu3+ transparent ceramic phosphors with different Ga3+ contents, schematic illustration inserted (b) wavelength-temperature (λ-T) contour plot of the GGG:Cr3+-Eu3+ (x = 5) transparent ceramic.

Tables (1)

Tables Icon

Table 1 Radiance of GAGG:Cr3+-Eu3+ transparent ceramic phosphors with different Ga3+ contents compared with GGG:Cr3+ and ZnGa2O4:Cr3+ ceramic phosphors [27].

Metrics