Abstract

The surface plasmon resonance (SPR) and photoluminescence characteristics of gold and silver micro-flowers were compared to those of gold and silver nanoparticles. The micro-flower structures were grown under electron beam deposition using an alumina template. Both types of metallic micro-flowers showed systematic arrangements; they formed islands of flowers about 20 µm across, each one comprised of spikes ranging from 1 to 5 µm in length. A red shift in the SPR and enhancement intensity was observed for both micro-flowers and nanoparticles; the incremental increase was more than 50%. These results, which showed that gold and silver micro-flowers agglomerate at a micron size scale, are useful for the design of easier and more cost effective methods for large area fabrication, especially for particular plasmonic applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency

R. Kuladeep, L. Jyothi, K. Shadak Alee, K. L. N. Deepak, and D. Narayana Rao
Opt. Mater. Express 2(2) 161-172 (2012)

Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays

Hsiang-Lin Huang, Chen Feng Chou, Shi Hua Shiao, Yi-Cheng Liu, Jian-Jang Huang, Shien Uang Jen, and Hai-Pang Chiang
Opt. Express 21(S5) A901-A908 (2013)

Comparison of surface plasmon resonance responses to dry/wet air for Ag, Cu, and Au/SiO2

Jinlian Hu, Peisheng Liu, and Lu Chen
Appl. Opt. 51(9) 1357-1360 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323–327 (1983).
    [Crossref]
  2. L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
    [Crossref] [PubMed]
  3. S. M. Huang, Z. Sun, and Y. F. Lu, “Nanofabrication by laser irradiation of polystyrene particle layers on silicon,” Nanotechnology 18, 025302 (2007).
  4. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using nsom probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
    [Crossref] [PubMed]
  5. A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258(2), 774–779 (2011).
    [Crossref]
  6. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
    [PubMed]
  7. J. Grunes, J. Zhu, E. A. Anderson, and G. A. Somorjai, “Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area,” J. Phys. Chem. B 106(44), 11463–11468 (2002).
    [Crossref]
  8. S. Biring, “Tuning of particle resonances in binary dielectric medium,” Phys. Lett. A 376(2), 125–127 (2011).
    [Crossref]
  9. M.-C. Wu, M.-P. Lin, S.-W. Chen, P.-H. Lee, J.-H. Li, and W.-F. Su, “Surface-enhanced raman scattering substrate based on ag coated monolayer sphere array of sio2 for organic dye detecting,” RSC Advances, 2013.
  10. B. I. Kharisov, “A review for synthesis of nanoflowers,” Recent Pat. Nanotechnol. 2(3), 190–200 (2008).
    [Crossref] [PubMed]
  11. Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22(38), 385601 (2011).
    [Crossref] [PubMed]
  12. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
    [Crossref] [PubMed]
  13. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
    [Crossref]
  14. X. T. Zhang, K. M. Ip, Q. Li, and S. K. Hark, “Photoluminescence of ag-doped znse nanowires synthesized by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(20), 203114 (2005).
    [Crossref]
  15. V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5(1), 99–104 (2010).
    [Crossref]
  16. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by au nanostructures: Nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
    [Crossref] [PubMed]
  17. B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
    [Crossref]
  18. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  19. J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
    [Crossref]
  20. S. K. Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lighw. Tech. 21(3), 805–814 (2003).
    [Crossref]
  21. K. S. Hamdan, S. M. Abdullah, K. Sulaiman, and R. Zakaria, “Effects of silver nanoparticles towards the efficiency of organic solar cells,” Appl. Phys., A Mater. Sci. Process. 115(1), 63–68 (2014).
    [Crossref]
  22. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: Strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
    [Crossref] [PubMed]
  23. S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
    [Crossref]
  24. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The `lightning' gold nanorods: Fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
    [Crossref]
  25. Y. Zhao, Y. Jiang, and Y. Fang, “Spectroscopy property of ag nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 65(5), 1003–1006 (2006).
    [Crossref] [PubMed]
  26. T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
    [Crossref]
  27. H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
    [Crossref] [PubMed]

2014 (2)

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

K. S. Hamdan, S. M. Abdullah, K. Sulaiman, and R. Zakaria, “Effects of silver nanoparticles towards the efficiency of organic solar cells,” Appl. Phys., A Mater. Sci. Process. 115(1), 63–68 (2014).
[Crossref]

2013 (1)

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

2012 (2)

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
[Crossref] [PubMed]

2011 (5)

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258(2), 774–779 (2011).
[Crossref]

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

S. Biring, “Tuning of particle resonances in binary dielectric medium,” Phys. Lett. A 376(2), 125–127 (2011).
[Crossref]

Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22(38), 385601 (2011).
[Crossref] [PubMed]

2010 (1)

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5(1), 99–104 (2010).
[Crossref]

2009 (2)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by au nanostructures: Nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
[Crossref]

2008 (3)

2007 (1)

S. M. Huang, Z. Sun, and Y. F. Lu, “Nanofabrication by laser irradiation of polystyrene particle layers on silicon,” Nanotechnology 18, 025302 (2007).

2006 (1)

Y. Zhao, Y. Jiang, and Y. Fang, “Spectroscopy property of ag nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 65(5), 1003–1006 (2006).
[Crossref] [PubMed]

2005 (2)

X. T. Zhang, K. M. Ip, Q. Li, and S. K. Hark, “Photoluminescence of ag-doped znse nanowires synthesized by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(20), 203114 (2005).
[Crossref]

B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
[Crossref]

2003 (1)

S. K. Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lighw. Tech. 21(3), 805–814 (2003).
[Crossref]

2002 (1)

J. Grunes, J. Zhu, E. A. Anderson, and G. A. Somorjai, “Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area,” J. Phys. Chem. B 106(44), 11463–11468 (2002).
[Crossref]

2000 (1)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The `lightning' gold nanorods: Fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

1983 (1)

F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323–327 (1983).
[Crossref]

Abdullah, S. M.

K. S. Hamdan, S. M. Abdullah, K. Sulaiman, and R. Zakaria, “Effects of silver nanoparticles towards the efficiency of organic solar cells,” Appl. Phys., A Mater. Sci. Process. 115(1), 63–68 (2014).
[Crossref]

Alexeenko, A. A.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
[Crossref]

Anderson, E. A.

J. Grunes, J. Zhu, E. A. Anderson, and G. A. Somorjai, “Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area,” J. Phys. Chem. B 106(44), 11463–11468 (2002).
[Crossref]

Atkinson, R.

Bando, Y.

B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
[Crossref]

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by au nanostructures: Nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Biring, S.

S. Biring, “Tuning of particle resonances in binary dielectric medium,” Phys. Lett. A 376(2), 125–127 (2011).
[Crossref]

Bogy, D. B.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Bohren, F.

F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323–327 (1983).
[Crossref]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Cheung, L. S.

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
[Crossref] [PubMed]

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by au nanostructures: Nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Dickson, W.

Dmitruk, I. M.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
[Crossref]

Du, J.

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

Duan, H.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

El-Sayed, M. A.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The `lightning' gold nanorods: Fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Evans, P.

Fainman, Y.

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

Fang, Y.

Y. Zhao, Y. Jiang, and Y. Fang, “Spectroscopy property of ag nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 65(5), 1003–1006 (2006).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5(1), 99–104 (2010).
[Crossref]

Golberg, D.

B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
[Crossref]

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by au nanostructures: Nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Grunes, J.

J. Grunes, J. Zhu, E. A. Anderson, and G. A. Somorjai, “Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area,” J. Phys. Chem. B 106(44), 11463–11468 (2002).
[Crossref]

Gu, Q.

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

Gu, S.

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by au nanostructures: Nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Hamdan, K. S.

K. S. Hamdan, S. M. Abdullah, K. Sulaiman, and R. Zakaria, “Effects of silver nanoparticles towards the efficiency of organic solar cells,” Appl. Phys., A Mater. Sci. Process. 115(1), 63–68 (2014).
[Crossref]

Hark, S. K.

X. T. Zhang, K. M. Ip, Q. Li, and S. K. Hark, “Photoluminescence of ag-doped znse nanowires synthesized by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(20), 203114 (2005).
[Crossref]

Hendren, W.

Hou, Y.

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

Hu, H.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Huang, S. M.

S. M. Huang, Z. Sun, and Y. F. Lu, “Nanofabrication by laser irradiation of polystyrene particle layers on silicon,” Nanotechnology 18, 025302 (2007).

Ip, K. M.

X. T. Zhang, K. M. Ip, Q. Li, and S. K. Hark, “Photoluminescence of ag-doped znse nanowires synthesized by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(20), 203114 (2005).
[Crossref]

Jiang, Y.

Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22(38), 385601 (2011).
[Crossref] [PubMed]

Y. Zhao, Y. Jiang, and Y. Fang, “Spectroscopy property of ag nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 65(5), 1003–1006 (2006).
[Crossref] [PubMed]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by au nanostructures: Nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Khan, A.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258(2), 774–779 (2011).
[Crossref]

Kharisov, B. I.

B. I. Kharisov, “A review for synthesis of nanoflowers,” Recent Pat. Nanotechnol. 2(3), 190–200 (2008).
[Crossref] [PubMed]

Kinzel, E. C.

Kotko, A. V.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
[Crossref]

Li, J.

Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22(38), 385601 (2011).
[Crossref] [PubMed]

Li, L.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258(2), 774–779 (2011).
[Crossref]

Li, Q.

Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22(38), 385601 (2011).
[Crossref] [PubMed]

X. T. Zhang, K. M. Ip, Q. Li, and S. K. Hark, “Photoluminescence of ag-doped znse nanowires synthesized by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(20), 203114 (2005).
[Crossref]

Link, S.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The `lightning' gold nanorods: Fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Liu, B. D.

B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
[Crossref]

Liua, S.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Liua, W.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Liub, S.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Losytskyy, M. Y.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
[Crossref]

Lu, Y. F.

S. M. Huang, Z. Sun, and Y. F. Lu, “Nanofabrication by laser irradiation of polystyrene particle layers on silicon,” Nanotechnology 18, 025302 (2007).

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The `lightning' gold nanorods: Fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Murphy-DuBay, N.

O’Connor, D.

Özdemir, S. K.

S. K. Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lighw. Tech. 21(3), 805–814 (2003).
[Crossref]

Pan, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Park, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Peng, J.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Pinchuk, A. O.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
[Crossref]

Pollard, R.

Rho, J.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Rodríguez-Oliveros, R.

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5(1), 99–104 (2010).
[Crossref]

Rogach, A. L.

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5(1), 99–104 (2010).
[Crossref]

Sau, T. K.

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
[Crossref] [PubMed]

Sekiguchi, T.

B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
[Crossref]

Shao, L.

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
[Crossref] [PubMed]

Sheikh, M. A.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258(2), 774–779 (2011).
[Crossref]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Shen, Z. X.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Shi, S.

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

Smalley, J. S. T.

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

Somorjai, G. A.

J. Grunes, J. Zhu, E. A. Anderson, and G. A. Somorjai, “Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area,” J. Phys. Chem. B 106(44), 11463–11468 (2002).
[Crossref]

Sulaiman, K.

K. S. Hamdan, S. M. Abdullah, K. Sulaiman, and R. Zakaria, “Effects of silver nanoparticles towards the efficiency of organic solar cells,” Appl. Phys., A Mater. Sci. Process. 115(1), 63–68 (2014).
[Crossref]

Sun, C.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Sun, Z.

S. M. Huang, Z. Sun, and Y. F. Lu, “Nanofabrication by laser irradiation of polystyrene particle layers on silicon,” Nanotechnology 18, 025302 (2007).

Suna, T.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Susha, A. S.

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
[Crossref] [PubMed]

Tang, C. C.

B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
[Crossref]

Turhan-Sayan, G.

S. K. Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lighw. Tech. 21(3), 805–814 (2003).
[Crossref]

Ulin-Avila, E.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Uppuluri, S. M. V.

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The `lightning' gold nanorods: Fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Wang, J.

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
[Crossref] [PubMed]

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

Wang, L.

Wang, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Wang, Z.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258(2), 774–779 (2011).
[Crossref]

Wanga, S.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Whitehead, D. J.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258(2), 774–779 (2011).
[Crossref]

Wu, X.-J.

Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22(38), 385601 (2011).
[Crossref] [PubMed]

Wua, X.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Wurtz, G. A.

Xie, R. G.

B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
[Crossref]

Xiong, S.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Xiong, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Xu, D.

Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22(38), 385601 (2011).
[Crossref] [PubMed]

Xu, X.

Xua, Z.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Yang, J. K. W.

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Ye, S.

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

Yeshchenko, O. A.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
[Crossref]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Zakaria, R.

K. S. Hamdan, S. M. Abdullah, K. Sulaiman, and R. Zakaria, “Effects of silver nanoparticles towards the efficiency of organic solar cells,” Appl. Phys., A Mater. Sci. Process. 115(1), 63–68 (2014).
[Crossref]

Zayats, A. V.

Zeng, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Zhang, X.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Zhang, X. T.

X. T. Zhang, K. M. Ip, Q. Li, and S. K. Hark, “Photoluminescence of ag-doped znse nanowires synthesized by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(20), 203114 (2005).
[Crossref]

Zhang, Z.

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

Zhanga, Z.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, Y. Jiang, and Y. Fang, “Spectroscopy property of ag nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 65(5), 1003–1006 (2006).
[Crossref] [PubMed]

Zhaoa, W.

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

Zhu, J.

J. Grunes, J. Zhu, E. A. Anderson, and G. A. Somorjai, “Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area,” J. Phys. Chem. B 106(44), 11463–11468 (2002).
[Crossref]

Zhu, R.

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

ACS Nano (2)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by au nanostructures: Nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

H. Hu, H. Duan, J. K. W. Yang, and Z. X. Shen, “Plasmon-modulated photoluminescence of individual gold nanostructures,” ACS Nano 6(11), 10147–10155 (2012).
[Crossref] [PubMed]

Am. J. Phys. (1)

F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323–327 (1983).
[Crossref]

Appl. Phys. Lett. (2)

B. D. Liu, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, and T. Sekiguchi, “Synthesis and optical study of crystalline gap nanoflowers,” Appl. Phys. Lett. 86(8), 083107 (2005).
[Crossref]

X. T. Zhang, K. M. Ip, Q. Li, and S. K. Hark, “Photoluminescence of ag-doped znse nanowires synthesized by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(20), 203114 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

K. S. Hamdan, S. M. Abdullah, K. Sulaiman, and R. Zakaria, “Effects of silver nanoparticles towards the efficiency of organic solar cells,” Appl. Phys., A Mater. Sci. Process. 115(1), 63–68 (2014).
[Crossref]

Appl. Surf. Sci. (2)

T. Suna, Z. Xua, W. Zhaoa, X. Wua, S. Liua, Z. Zhanga, S. Wanga, W. Liua, S. Liub, and J. Peng, “Fabrication of the similar porous alumina silicon template for soft uv nanoimprint lithography,” Appl. Surf. Sci. 276, 363–368 (2013).
[Crossref]

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258(2), 774–779 (2011).
[Crossref]

Chem. Phys. Lett. (1)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The `lightning' gold nanorods: Fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

J. Lighw. Tech. (1)

S. K. Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lighw. Tech. 21(3), 805–814 (2003).
[Crossref]

J. Mater. Sci. Technol. (1)

S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, and J. Du, “Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina,” J. Mater. Sci. Technol. 27(2), 165–169 (2011).
[Crossref]

J. Phys. Chem. B (2)

J. Grunes, J. Zhu, E. A. Anderson, and G. A. Somorjai, “Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area,” J. Phys. Chem. B 106(44), 11463–11468 (2002).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Langmuir (1)

L. Shao, A. S. Susha, L. S. Cheung, T. K. Sau, A. L. Rogach, and J. Wang, “Plasmonic properties of single multispiked gold nanostars: Correlating modeling with experiments,” Langmuir 28(24), 8979–8984 (2012).
[Crossref] [PubMed]

Nanotechnology (2)

S. M. Huang, Z. Sun, and Y. F. Lu, “Nanofabrication by laser irradiation of polystyrene particle layers on silicon,” Nanotechnology 18, 025302 (2007).

Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22(38), 385601 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Lett. A (1)

S. Biring, “Tuning of particle resonances in binary dielectric medium,” Phys. Lett. A 376(2), 125–127 (2011).
[Crossref]

Phys. Rev. B (1)

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Y. Losytskyy, A. V. Kotko, and A. O. Pinchuk, “Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica,” Phys. Rev. B 79(23), 235438 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Plasmonics (1)

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5(1), 99–104 (2010).
[Crossref]

Recent Pat. Nanotechnol. (1)

B. I. Kharisov, “A review for synthesis of nanoflowers,” Recent Pat. Nanotechnol. 2(3), 190–200 (2008).
[Crossref] [PubMed]

Sci Rep (1)

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci Rep 1(175), 175 (2011).
[PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

Y. Zhao, Y. Jiang, and Y. Fang, “Spectroscopy property of ag nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 65(5), 1003–1006 (2006).
[Crossref] [PubMed]

Other (1)

M.-C. Wu, M.-P. Lin, S.-W. Chen, P.-H. Lee, J.-H. Li, and W.-F. Su, “Surface-enhanced raman scattering substrate based on ag coated monolayer sphere array of sio2 for organic dye detecting,” RSC Advances, 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the fabrication of Au/Ag micro-flowers
Fig. 2
Fig. 2 FESEM images of (a) several clusters of Au micro-flowers at the selected area with sizes and spacing shown under low magnification, revealing the size of micro-flowers as small as ~6 µm and (b) a cluster from area A in 2(a), shown at higher magnification
Fig. 3
Fig. 3 FESEM images of (a) several clusters of Ag micro-flowers at the selected area with sizes and spacing stated, with the smallest formation measured about 60 µm and (b) a cluster from area A in Fig. 3(a) at a higher magnification.
Fig. 4
Fig. 4 UV-Vis absorption spectra comparing (a) Au micro-flowers and Au nanoparticles with an FESEM image of Au nanoparticles which had an even distribution of ~20nm and (b) Ag micro-flowers, the band shown is between 545 nm and 440 nm, which is the transverse plasmon resonance. An FESEM image of the Ag nanoparticles is also shown. c) UV-vis absorption spectra for Ag nanoparticles.
Fig. 5
Fig. 5 Photoluminescence spectrum analysis comparing of Au/Ag micro-flowers (μF) and Au/Ag nanoparticles (NP). Unlike the Au/Ag nanoparticles, the Au micro-flowers had a higher intensity than the Ag micro-flowers.

Tables (1)

Tables Icon

Table 1 Comparison of Wavelength and Photoluminescence Maximum of Au/Ag micro-flowers (µF) and Au/Ag nanoparticles (NP)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 1 = 2 4 β 1 | E 0 | 2 V| L 2 ( ω exc ) L 2 ( ω em ) |,

Metrics