Abstract

We propose a novel material prepared by microwave-hydrothermal treatment, the tetragonal xenotime-type yttrium orthophosphate YPO4 nanocrystals doped by different concentrations of Dy3+. It may be suitable for laser-induced local heating of cancer tumors for hyperthermia. We heated a powder consisted of the nanoparticles by focused quasi-CW laser irradiation at different wavelengths in the near IR spectral range fitting the transparency window of biological tissues. The local temperature on the surface of the powder in the place of irradiation increases linearly with increasing laser power and increasing the Dy3+ concentration. At the same time the efficiency of local heating Φ = ΔT / (P f) (ΔT is a local temperature increase, f is an oscillator strength of absorption transition, and P is the quantity of laser power) is proportional to the energy of the initially excited electronic level. The proposed method allows for high rates of heating and cooling. The laser power used for heating was rather low, tens of milliwatts that together with short heating time to required temperature may result in extremely low doses of laser irradiation for heating.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved photoluminescent properties in one-dimensional LaPO4:Eu3+ nanowires

Hongwei Song, Lixin Yu, Shaozhe Lu, Zhongxin Liu, Linmei Yang, and Tie Wang
Opt. Lett. 30(5) 483-485 (2005)

Inorganic nanoparticles for optical bioimaging

Daniel Jaque, Cyrille Richard, Bruno Viana, Kohei Soga, Xiaogang Liu, and Jose García Solé
Adv. Opt. Photon. 8(1) 1-103 (2016)

Enhanced upconversion fluorescence and altered particle size of β-NaGdF4:Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions

Wei Zhu, Qixiao Wu, Suling Zhao, Zhiqin Liang, Yongxin Yang, Junjie Zhang, and Zheng Xu
Opt. Mater. Express 6(9) 3001-3007 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
    [Crossref] [PubMed]
  2. O. Svelto, Principles of Lasers (Springer, 1998).
  3. Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B Condens. Matter 49(6), 3821–3830 (1994).
    [Crossref] [PubMed]
  4. A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
    [Crossref]
  5. E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
    [Crossref]
  6. V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).
  7. S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
    [Crossref]
  8. R. P. Bauman and S. P. S. Porto, “Lattice vibration and structure of rare-earth fluorides,” Phys. Rev. 161(3), 842–847 (1967).
    [Crossref]
  9. K. K. Pukhov, T. T. Basiev, and Yu. V. Orlovskii, “Spontaneous emission in dielectric nanoparticles,” JETP Lett. 88(1), 12–18 (2008).
    [Crossref]
  10. R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter 21(27), 275501 (2009).
    [Crossref] [PubMed]
  11. E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
    [Crossref] [PubMed]
  12. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, (Prentice-Hall Inc., 2001).
  13. A.F. Cotton, G. Wilkinson, Advanced Inorganic Chemistry (Wiley-Interscience, 1988).

2014 (2)

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

2009 (1)

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter 21(27), 275501 (2009).
[Crossref] [PubMed]

2008 (2)

K. K. Pukhov, T. T. Basiev, and Yu. V. Orlovskii, “Spontaneous emission in dielectric nanoparticles,” JETP Lett. 88(1), 12–18 (2008).
[Crossref]

A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
[Crossref]

2006 (1)

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

2000 (1)

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

1994 (1)

Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B Condens. Matter 49(6), 3821–3830 (1994).
[Crossref] [PubMed]

1970 (1)

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

1967 (1)

R. P. Bauman and S. P. S. Porto, “Lattice vibration and structure of rare-earth fluorides,” Phys. Rev. 161(3), 842–847 (1967).
[Crossref]

Ayala, A. P.

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

Basiev, T. T.

K. K. Pukhov, T. T. Basiev, and Yu. V. Orlovskii, “Spontaneous emission in dielectric nanoparticles,” JETP Lett. 88(1), 12–18 (2008).
[Crossref]

Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B Condens. Matter 49(6), 3821–3830 (1994).
[Crossref] [PubMed]

Bauman, R. P.

R. P. Bauman and S. P. S. Porto, “Lattice vibration and structure of rare-earth fluorides,” Phys. Rev. 161(3), 842–847 (1967).
[Crossref]

Benayas, A.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Bettinelli, M.

A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
[Crossref]

Boatner, L. A.

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

Caspers, H. H.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Cavalli, E.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter 21(27), 275501 (2009).
[Crossref] [PubMed]

del Rosal, B.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Eichler, H. J.

A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
[Crossref]

Faoro, R.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter 21(27), 275501 (2009).
[Crossref] [PubMed]

García Solé, J.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Glushkov, N. A.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Guedes, I.

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

Haro-Gonzalez, P.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Jaque, D.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Joost, U.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Kaldvee, K.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Kaminskii, A. A.

A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
[Crossref]

Keevend, K.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Kiisk, V.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Konov, V. I.

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

Lange, S.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Loong, C.-K.

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

Loschenov, V. B.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

Mäeorg, U.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Magnani, N.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter 21(27), 275501 (2009).
[Crossref] [PubMed]

Mariotto, G.

A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
[Crossref]

Martín Rodríguez, E.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Martínez Maestro, L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Miller, S. A.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Moglia, F.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter 21(27), 275501 (2009).
[Crossref] [PubMed]

Moreira, R. L.

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

Orlovskaya, E. O.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Orlovskii, Y. V.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B Condens. Matter 49(6), 3821–3830 (1994).
[Crossref] [PubMed]

Orlovskii, Yu. V.

K. K. Pukhov, T. T. Basiev, and Yu. V. Orlovskii, “Spontaneous emission in dielectric nanoparticles,” JETP Lett. 88(1), 12–18 (2008).
[Crossref]

Osiko, V. V.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Paschoal, C. W. A.

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

Plaza, J. L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Popov, A. V.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Porto, S. P. S.

R. P. Bauman and S. P. S. Porto, “Lattice vibration and structure of rare-earth fluorides,” Phys. Rev. 161(3), 842–847 (1967).
[Crossref]

Powell, R. C.

Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B Condens. Matter 49(6), 3821–3830 (1994).
[Crossref] [PubMed]

Prokhorov, A. M.

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

Pukhov, K. K.

K. K. Pukhov, T. T. Basiev, and Yu. V. Orlovskii, “Spontaneous emission in dielectric nanoparticles,” JETP Lett. 88(1), 12–18 (2008).
[Crossref]

Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B Condens. Matter 49(6), 3821–3830 (1994).
[Crossref] [PubMed]

Rast, H. E.

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

Reeves, R. J.

Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B Condens. Matter 49(6), 3821–3830 (1994).
[Crossref] [PubMed]

Rhee, H.

A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
[Crossref]

Ryabova, A. V.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Samsonova, E. V.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Sildos, I.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Silva, E. N.

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

Speghini, A.

A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
[Crossref]

Steiner, R.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Tonelli, M.

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter 21(27), 275501 (2009).
[Crossref] [PubMed]

Vanetsev, A. S.

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. A. Miller, H. E. Rast, and H. H. Caspers, “Lattice vibrations of LiYF4,” J. Chem. Phys. 52(8), 4172–4175 (1970).
[Crossref]

J. Phys. Condens. Matter (1)

R. Faoro, F. Moglia, M. Tonelli, N. Magnani, and E. Cavalli, “Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice,” J. Phys. Condens. Matter 21(27), 275501 (2009).
[Crossref] [PubMed]

JETP Lett. (1)

K. K. Pukhov, T. T. Basiev, and Yu. V. Orlovskii, “Spontaneous emission in dielectric nanoparticles,” JETP Lett. 88(1), 12–18 (2008).
[Crossref]

Laser Phys. (1)

V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188–1207 (2000).

Laser Phys. Lett. (1)

A. A. Kaminskii, M. Bettinelli, A. Speghini, H. Rhee, H. J. Eichler, and G. Mariotto, “Tetragonal YPO4 – a novel SRS-active crystal,” Laser Phys. Lett. 5(5), 367–374 (2008).
[Crossref]

Nanoscale (1)

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Opt. Mater. (1)

E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C.-K. Loong, and L. A. Boatner, “Vibrational spectra of monazite-type rare-earth orthophosphates,” Opt. Mater. 29(2-3), 224–230 (2006).
[Crossref]

Phys. Chem. Chem. Phys. (1)

E. V. Samsonova, A. V. Popov, A. S. Vanetsev, K. Keevend, E. O. Orlovskaya, V. Kiisk, S. Lange, U. Joost, K. Kaldvee, U. Mäeorg, N. A. Glushkov, A. V. Ryabova, I. Sildos, V. V. Osiko, R. Steiner, V. B. Loschenov, and Y. V. Orlovskii, “An energy transfer kinetic probe for OH-quenchers in the Nd(3+):YPO4 nanocrystals suitable for imaging in the biological tissue transparency window,” Phys. Chem. Chem. Phys. 16(48), 26806–26815 (2014).
[Crossref] [PubMed]

Phys. Rev. (1)

R. P. Bauman and S. P. S. Porto, “Lattice vibration and structure of rare-earth fluorides,” Phys. Rev. 161(3), 842–847 (1967).
[Crossref]

Phys. Rev. B Condens. Matter (1)

Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B Condens. Matter 49(6), 3821–3830 (1994).
[Crossref] [PubMed]

Other (3)

O. Svelto, Principles of Lasers (Springer, 1998).

B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, (Prentice-Hall Inc., 2001).

A.F. Cotton, G. Wilkinson, Advanced Inorganic Chemistry (Wiley-Interscience, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Energy level diagram with indication of multiphonon transitions (solid arrows downward) in the Dy3+: YPO4 crystalline nanoparticles under direct laser excitation into the 6F3/2, 6F5/2, and 6F7/2 levels of the Dy3+ ion.
Fig. 2
Fig. 2 Reflectance spectrum of the DyPO4 sample at room temperature measured by Laser Electronic LESA-01-Biospec spectra analyzer with tunable femtosecond Chameleon laser excitation. The spectrum is recorded by diffuse reflection of white light from a thin layer of powder. Y axis is the relative units.
Fig. 3
Fig. 3 The local temperature increase ∆T of the Y1-xDyxPO4 powder taken from the hottest pixel of the image of the powder surface on the IR camera after laser irradiation versus laser power. Excitation was done into the 6F5/2 (811 nm) and 6F7/2 (914 nm) levels of Dy3+ in the scanning microscope spot mode. Temperature measurements were done when approaching the steady-state. The laser parameters and details of the optical scheme of excitation are given in the Appendix.
Fig. 4
Fig. 4 The local temperature increase ∆T of the Y1-xDyxPO4 powder taken from the hottest pixel of the image of the powder surface on the IR camera after 100 mW laser irradiation versus the concentration of Dy3+. Excitation was done in the scanning microscope spot mode. Temperature meausrements were done when approaching the steady-state.
Fig. 5
Fig. 5 The local temperature kinetics of the hottest area of the DyPO4 nanocrystals powder (0.425 x 0.425 mm) taken from the hottest pixel of the image on the IR camera of the powder surface under laser irradiation in the scanning microscope spot mode with the average power of 30 mW at different excitation wavelengths, from top to bottom 811 (red), 914 (dark red), 760 (green), and 850 nm (blue). The laser was switched, on and off, every second.
Fig. 6
Fig. 6 XRD patterns of the Y1-xDyxPO4 nanoparticles with x = 0.01 (red) and 1 (black).
Fig. 7
Fig. 7 TEM image and particles size distribution of the Y0.99Dy0.01PO4 nanoparticles.
Fig. 8
Fig. 8 TEM image and particles size distribution of the Y0.525Dy0.475PO4 nanoparticles.
Fig. 9
Fig. 9 TEM image and particles size distribution of the DyPO4 nanoparticles.
Fig. 10
Fig. 10 Scheme of the experiment for temperature measurement.

Tables (1)

Tables Icon

Table 1 The Heating Efficiency Φ of the Y1-xDyxPO4 Nanocrystals Depending on the Number (N) of Multiphonon Transitions with p ≤ 3 in the Cascade Nonradiative Relaxation Process (ℏωmax ≈1100 cm−1a)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dT/dt=ab(Tθ)
a=( N D / C V )(1 η f )( τ p / τ 0 )( σ nano / σ bulk ) σ if (ω)I(ω)dω ,
b=Sh/V C V ,
ΔT(t)=a[1exp(bt)]/b.
CSR = λ/(β×cos(θ)),

Metrics