Abstract

Techniques to control the colors and properties of glasses based on doping of the glasses with various metals and nanoparticles are widely used. In this paper, we demonstrate the migration of a nickel sphere in silica glass caused by laser illumination accompanied by nickel nanoparticle precipitation in the sphere migration trajectory. During migration, the diameter of the nickel sphere decreased. Precipitated nanoparticles with diameters of several hundred nanometers were observed in areas of up to 50 μm in radius and these nanoparticles formed four cylindrical coaxial layers with stripes at 10–20 μm intervals in the migration direction.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Moving force of metal particle migration induced by laser irradiation in borosilicate glass

Hirofumi Hidai, Makoto Matsushita, Souta Matsusaka, Akira Chiba, and Noboru Morita
Opt. Express 21(16) 18955-18962 (2013)

Compositional redistribution in CaO–Al2O3–SiO2 glass induced by the migration of a steel microsphere due to continuous-wave-laser irradiation

Tetsuo Kishi, Tetsuto Kokan, Yukihiro Yoshida, Tatsuki Iwamoto, Hirofumi Hidai, Fumiya Noritake, Nobuhiro Matsushita, and Tetsuji Yano
Opt. Express 26(10) 13020-13026 (2018)

Metal particle manipulation by laser irradiation in borosilicate glass

Hirofumi Hidai, Takato Yamazaki, Sho Itoh, Kuniaki Hiromatsu, and Hitoshi Tokura
Opt. Express 18(19) 20313-20320 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
    [Crossref]
  2. S. Matsusaka, T. Kobayakawa, H. Hidai, and N. Morita, “Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method,” J. Phys. Conf. Ser. 379, 012035 (2012).
    [Crossref]
  3. S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
    [Crossref]
  4. T. Haranoh, H. Ishikawa, N. Shinkai, and M. Mizuhashi, “Crack evolution in Vickers indentation for soda-lime-silica glass,” J. Mater. Sci. 17(5), 1493–1500 (1982).
    [Crossref]
  5. J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24(11), 786–788 (1999).
    [Crossref] [PubMed]
  6. J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett. 29(4), 370–372 (2004).
    [Crossref] [PubMed]
  7. X. W. Jiang, J. R. Qiu, H. D. Zeng, C. S. Zhu, and K. Hirao, “Laser-controlled dissolution of gold nanoparticles in glass,” Chem. Phys. Lett. 391(1-3), 91–94 (2004).
    [Crossref]
  8. H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
    [Crossref] [PubMed]
  9. H. Hidai, M. Matsushita, S. Matsusaka, A. Chiba, and N. Morita, “Moving force of metal particle migration induced by laser irradiation in borosilicate glass,” Opt. Express 21(16), 18955–18962 (2013).
    [Crossref] [PubMed]
  10. H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
    [Crossref]
  11. H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural changes in silica glass by continuous-wave laser backside irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).
  12. W. S. Rodney and R. J. Spindler, “Index of refraction of fused quartz glass for ultraviolet, visible, and infrared wavelengths,” J. Opt. Soc. Am. 44(9), 677–678 (1954).
    [Crossref]
  13. C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology (Imperial College Press, 2012).
  14. R. N. Ghoshtagore, “Diffusion of nickel in amorphous silicon dioxide and silicon nitride films,” J. Appl. Phys. 40(11), 4374–4376 (1969).
    [Crossref]
  15. J. T. Mayer, R. F. Lin, and E. Garfunkel, “Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide,” Surf. Sci. 265(1-3), 102–110 (1992).
    [Crossref]
  16. A. A. Borisov, “Experimental study of the effect of SiO2 on Ni solubility in silicate melts,” Petrology 14(6), 530–539 (2006).
    [Crossref]
  17. H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
    [Crossref]
  18. H. Amekura, H. Kitazawa, and N. Kishimoto, “Non-magnetic to magnetic and non-metal to metal transitions in nickel nanoparticles in SiO2 under heat treatment,” Nuclear Instrum. Methods B 219–220, 825–829 (2004).
    [Crossref]
  19. H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nuclear Instrum. Methods B 222(1-2), 114–122 (2004).
    [Crossref]

2014 (1)

S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
[Crossref]

2013 (1)

2012 (1)

S. Matsusaka, T. Kobayakawa, H. Hidai, and N. Morita, “Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method,” J. Phys. Conf. Ser. 379, 012035 (2012).
[Crossref]

2010 (2)

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural changes in silica glass by continuous-wave laser backside irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
[Crossref] [PubMed]

2009 (1)

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

2006 (1)

A. A. Borisov, “Experimental study of the effect of SiO2 on Ni solubility in silicate melts,” Petrology 14(6), 530–539 (2006).
[Crossref]

2005 (1)

H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
[Crossref]

2004 (4)

H. Amekura, H. Kitazawa, and N. Kishimoto, “Non-magnetic to magnetic and non-metal to metal transitions in nickel nanoparticles in SiO2 under heat treatment,” Nuclear Instrum. Methods B 219–220, 825–829 (2004).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nuclear Instrum. Methods B 222(1-2), 114–122 (2004).
[Crossref]

J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett. 29(4), 370–372 (2004).
[Crossref] [PubMed]

X. W. Jiang, J. R. Qiu, H. D. Zeng, C. S. Zhu, and K. Hirao, “Laser-controlled dissolution of gold nanoparticles in glass,” Chem. Phys. Lett. 391(1-3), 91–94 (2004).
[Crossref]

1999 (1)

1992 (1)

J. T. Mayer, R. F. Lin, and E. Garfunkel, “Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide,” Surf. Sci. 265(1-3), 102–110 (1992).
[Crossref]

1988 (1)

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
[Crossref]

1982 (1)

T. Haranoh, H. Ishikawa, N. Shinkai, and M. Mizuhashi, “Crack evolution in Vickers indentation for soda-lime-silica glass,” J. Mater. Sci. 17(5), 1493–1500 (1982).
[Crossref]

1969 (1)

R. N. Ghoshtagore, “Diffusion of nickel in amorphous silicon dioxide and silicon nitride films,” J. Appl. Phys. 40(11), 4374–4376 (1969).
[Crossref]

1954 (1)

Amekura, H.

H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
[Crossref]

H. Amekura, H. Kitazawa, and N. Kishimoto, “Non-magnetic to magnetic and non-metal to metal transitions in nickel nanoparticles in SiO2 under heat treatment,” Nuclear Instrum. Methods B 219–220, 825–829 (2004).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nuclear Instrum. Methods B 222(1-2), 114–122 (2004).
[Crossref]

Borisov, A. A.

A. A. Borisov, “Experimental study of the effect of SiO2 on Ni solubility in silicate melts,” Petrology 14(6), 530–539 (2006).
[Crossref]

Chiba, A.

S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
[Crossref]

H. Hidai, M. Matsushita, S. Matsusaka, A. Chiba, and N. Morita, “Moving force of metal particle migration induced by laser irradiation in borosilicate glass,” Opt. Express 21(16), 18955–18962 (2013).
[Crossref] [PubMed]

Garfunkel, E.

J. T. Mayer, R. F. Lin, and E. Garfunkel, “Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide,” Surf. Sci. 265(1-3), 102–110 (1992).
[Crossref]

Ghoshtagore, R. N.

R. N. Ghoshtagore, “Diffusion of nickel in amorphous silicon dioxide and silicon nitride films,” J. Appl. Phys. 40(11), 4374–4376 (1969).
[Crossref]

Haranoh, T.

T. Haranoh, H. Ishikawa, N. Shinkai, and M. Mizuhashi, “Crack evolution in Vickers indentation for soda-lime-silica glass,” J. Mater. Sci. 17(5), 1493–1500 (1982).
[Crossref]

Hidai, H.

S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
[Crossref]

H. Hidai, M. Matsushita, S. Matsusaka, A. Chiba, and N. Morita, “Moving force of metal particle migration induced by laser irradiation in borosilicate glass,” Opt. Express 21(16), 18955–18962 (2013).
[Crossref] [PubMed]

S. Matsusaka, T. Kobayakawa, H. Hidai, and N. Morita, “Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method,” J. Phys. Conf. Ser. 379, 012035 (2012).
[Crossref]

H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
[Crossref] [PubMed]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural changes in silica glass by continuous-wave laser backside irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Hirao, K.

Hiromatsu, K.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural changes in silica glass by continuous-wave laser backside irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
[Crossref] [PubMed]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Inouye, H.

Ishikawa, H.

T. Haranoh, H. Ishikawa, N. Shinkai, and M. Mizuhashi, “Crack evolution in Vickers indentation for soda-lime-silica glass,” J. Mater. Sci. 17(5), 1493–1500 (1982).
[Crossref]

Itoh, S.

Itoi, T.

S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
[Crossref]

Jiang, X.

Jiang, X. W.

X. W. Jiang, J. R. Qiu, H. D. Zeng, C. S. Zhu, and K. Hirao, “Laser-controlled dissolution of gold nanoparticles in glass,” Chem. Phys. Lett. 391(1-3), 91–94 (2004).
[Crossref]

Kishimoto, N.

H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
[Crossref]

H. Amekura, H. Kitazawa, and N. Kishimoto, “Non-magnetic to magnetic and non-metal to metal transitions in nickel nanoparticles in SiO2 under heat treatment,” Nuclear Instrum. Methods B 219–220, 825–829 (2004).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nuclear Instrum. Methods B 222(1-2), 114–122 (2004).
[Crossref]

Kitazawa, H.

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nuclear Instrum. Methods B 222(1-2), 114–122 (2004).
[Crossref]

H. Amekura, H. Kitazawa, and N. Kishimoto, “Non-magnetic to magnetic and non-metal to metal transitions in nickel nanoparticles in SiO2 under heat treatment,” Nuclear Instrum. Methods B 219–220, 825–829 (2004).
[Crossref]

Kobayakawa, T.

S. Matsusaka, T. Kobayakawa, H. Hidai, and N. Morita, “Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method,” J. Phys. Conf. Ser. 379, 012035 (2012).
[Crossref]

Kojima, K.

Kono, K.

H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
[Crossref]

Lin, R. F.

J. T. Mayer, R. F. Lin, and E. Garfunkel, “Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide,” Surf. Sci. 265(1-3), 102–110 (1992).
[Crossref]

Lu, J.

H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
[Crossref]

Matsusaka, S.

S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
[Crossref]

H. Hidai, M. Matsushita, S. Matsusaka, A. Chiba, and N. Morita, “Moving force of metal particle migration induced by laser irradiation in borosilicate glass,” Opt. Express 21(16), 18955–18962 (2013).
[Crossref] [PubMed]

S. Matsusaka, T. Kobayakawa, H. Hidai, and N. Morita, “Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method,” J. Phys. Conf. Ser. 379, 012035 (2012).
[Crossref]

Matsushita, M.

Mayer, J. T.

J. T. Mayer, R. F. Lin, and E. Garfunkel, “Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide,” Surf. Sci. 265(1-3), 102–110 (1992).
[Crossref]

Mitsuyu, T.

Miura, K.

Mizuhashi, M.

T. Haranoh, H. Ishikawa, N. Shinkai, and M. Mizuhashi, “Crack evolution in Vickers indentation for soda-lime-silica glass,” J. Mater. Sci. 17(5), 1493–1500 (1982).
[Crossref]

Morita, N.

S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
[Crossref]

H. Hidai, M. Matsushita, S. Matsusaka, A. Chiba, and N. Morita, “Moving force of metal particle migration induced by laser irradiation in borosilicate glass,” Opt. Express 21(16), 18955–18962 (2013).
[Crossref] [PubMed]

S. Matsusaka, T. Kobayakawa, H. Hidai, and N. Morita, “Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method,” J. Phys. Conf. Ser. 379, 012035 (2012).
[Crossref]

Naotomo, M.

S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
[Crossref]

Qiu, J.

Qiu, J. R.

X. W. Jiang, J. R. Qiu, H. D. Zeng, C. S. Zhu, and K. Hirao, “Laser-controlled dissolution of gold nanoparticles in glass,” Chem. Phys. Lett. 391(1-3), 91–94 (2004).
[Crossref]

Ramaswamy, R. V.

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
[Crossref]

Rodney, W. S.

Shinkai, N.

T. Haranoh, H. Ishikawa, N. Shinkai, and M. Mizuhashi, “Crack evolution in Vickers indentation for soda-lime-silica glass,” J. Mater. Sci. 17(5), 1493–1500 (1982).
[Crossref]

Si, J.

Spindler, R. J.

Srivastava, R.

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
[Crossref]

Takeda, Y.

H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nuclear Instrum. Methods B 222(1-2), 114–122 (2004).
[Crossref]

Tokura, H.

H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
[Crossref] [PubMed]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural changes in silica glass by continuous-wave laser backside irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Umeda, N.

H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nuclear Instrum. Methods B 222(1-2), 114–122 (2004).
[Crossref]

Yamazaki, T.

Yoshioka, M.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural changes in silica glass by continuous-wave laser backside irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Zeng, H. D.

X. W. Jiang, J. R. Qiu, H. D. Zeng, C. S. Zhu, and K. Hirao, “Laser-controlled dissolution of gold nanoparticles in glass,” Chem. Phys. Lett. 391(1-3), 91–94 (2004).
[Crossref]

Zhu, C.

Zhu, C. S.

X. W. Jiang, J. R. Qiu, H. D. Zeng, C. S. Zhu, and K. Hirao, “Laser-controlled dissolution of gold nanoparticles in glass,” Chem. Phys. Lett. 391(1-3), 91–94 (2004).
[Crossref]

Appl. Phys. Lett. (1)

S. Matsusaka, M. Naotomo, H. Hidai, A. Chiba, N. Morita, and T. Itoi, “Formation of a buried silver nanowire network in borosilicate glass by solid-state ion exchange assisted with forward and reverse electric fields,” Appl. Phys. Lett. 105(10), 103102 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Chem. Phys. Lett. (1)

X. W. Jiang, J. R. Qiu, H. D. Zeng, C. S. Zhu, and K. Hirao, “Laser-controlled dissolution of gold nanoparticles in glass,” Chem. Phys. Lett. 391(1-3), 91–94 (2004).
[Crossref]

J. Am. Ceram. Soc. (1)

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural changes in silica glass by continuous-wave laser backside irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

J. Appl. Phys. (1)

R. N. Ghoshtagore, “Diffusion of nickel in amorphous silicon dioxide and silicon nitride films,” J. Appl. Phys. 40(11), 4374–4376 (1969).
[Crossref]

J. Lightwave Technol. (1)

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
[Crossref]

J. Mater. Sci. (1)

T. Haranoh, H. Ishikawa, N. Shinkai, and M. Mizuhashi, “Crack evolution in Vickers indentation for soda-lime-silica glass,” J. Mater. Sci. 17(5), 1493–1500 (1982).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Conf. Ser. (1)

S. Matsusaka, T. Kobayakawa, H. Hidai, and N. Morita, “Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method,” J. Phys. Conf. Ser. 379, 012035 (2012).
[Crossref]

Nuclear Instrum. Methods B (3)

H. Amekura, N. Umeda, Y. Takeda, J. Lu, K. Kono, and N. Kishimoto, “Formation processes of nickel oxide nanoparticles in SiO2 by metal-ion implantation combined with thermal oxidation,” Nuclear Instrum. Methods B 230(1-4), 193–197 (2005).
[Crossref]

H. Amekura, H. Kitazawa, and N. Kishimoto, “Non-magnetic to magnetic and non-metal to metal transitions in nickel nanoparticles in SiO2 under heat treatment,” Nuclear Instrum. Methods B 219–220, 825–829 (2004).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nuclear Instrum. Methods B 222(1-2), 114–122 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Petrology (1)

A. A. Borisov, “Experimental study of the effect of SiO2 on Ni solubility in silicate melts,” Petrology 14(6), 530–539 (2006).
[Crossref]

Surf. Sci. (1)

J. T. Mayer, R. F. Lin, and E. Garfunkel, “Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide,” Surf. Sci. 265(1-3), 102–110 (1992).
[Crossref]

Other (1)

C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology (Imperial College Press, 2012).

Supplementary Material (2)

» Media 1: MOV (12140 KB)     
» Media 2: MOV (6519 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of experimental setup.
Fig. 2
Fig. 2 Ni sphere migration procedure.
Fig. 3
Fig. 3 Time-lapse photographs taken during nickel sphere migration in borosilicate glass (see Media 1; playback speed is twice as fast as actual speed). The images here were taken (a) 24 s (12 s in Media 1) and (b) 54 s (27 s in Media 1) after the laser illumination. The laser power was 2.85 W, and the spot diameter was 50–60 µm.
Fig. 4
Fig. 4 Time-lapse photographs taken during nickel sphere migration in silica glass (see Media 2; playback speed is twice as fast as actual speed). The images were taken (a) 16 s (8 s in Media 2), (b) 18 s (9 s in Media 2), (c) 20 s (10 s in Media 2), (d) 30 s (15 s in Media 2) after laser illumination. The laser power was 7.4 W, and the spot diameter was 160–170 µm.
Fig. 5
Fig. 5 Ni sphere size. Micrographs are shown of the Ni sphere with a diameter of 28 μm (a) that decreased in size as migration progressed in the silica glass, and the sphere reached a final diameter of 14 μm (b) after migration of 350 μm. (c) Ni sphere diameter at various migration distances.
Fig. 6
Fig. 6 Scanning electron micrographs (a)–(e), and X-ray maps (f)–(k) of the cross-sections of the sphere: the Ni sphere is shown in borosilicate glass (a) and in silica glass (b)–(e), while (c) shows a magnified image at the sphere, and (d) and (e) show the particles that were observed around the areas marked in (b). X-ray maps are shown of (f) Si-Kα and (g) Ni-Lα in borosilicate glass and of (h) Si-Kα and (i) Ni-Lα in silica glass.
Fig. 7
Fig. 7 Particle distributions in silica glass. (a,) (b) Micrographs of the metal sphere after polishing under transmission illumination, and (c)–(g) reflection images taken with the confocal microscope. A sphere is shown in borosilicate glass in (a) and (c) and in silica glass in (b) and (d)–(g). The images are focused at the surface in (c) and (d), and at depths of (e) 15 µm, (f) 30 µm and (g) 37 µm under the surface. An illustration of the nickel particle distribution in silica glass is shown in (h).

Metrics