Abstract

Rare earth (RE)-ion doped chalcogenide glasses are attractive for mid-infrared (MIR) fiber lasers for operation >4 μm. Our prior modeling suggests that praseodymium (Pr) is a suitable RE-ion dopant for realizing a selenide-based, chalcogenide-glass, step index fiber (SIF) MIR fiber laser operating at 4-5 μm wavelength. Fabrication of RE-ion doped chalcogenide glass fiber, especially with a small core, is a demanding process because crystallization must be avoided during the heat treatments required to effect shaping. Here, a 500 ppmw (parts per million parts, by weight) Pr3+-doped Ge-As-Ga-Se glass SIF with a 10 μm or 15 μm diameter core is reported; the cladding glass is Ge-As-Ga-Se-S. The multistage process to produce the fiber is outlined. Thermal and optical properties of the core/clad. glass pair, and the crystalline/amorphous nature and optical behavior of the small core fiber are reported. MIR photoluminescence and lifetime of a RE-ion doped chalcogenide glass small core fiber are reported for the first time.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon
Opt. Express 22(18) 21236-21252 (2014)

Mid-infrared emission in Tb3+-doped selenide glass fiber

L. Sojka, Z. Tang, D. Furniss, H. Sakr, Y. Fang, E. Beres-Pawlik, T. M. Benson, A. B. Seddon, and S. Sujecki
J. Opt. Soc. Am. B 34(3) A70-A79 (2017)

Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics

Zhuoqi Tang, Vladimir S. Shiryaev, David Furniss, Lukasz Sojka, Slawomir Sujecki, Trevor M. Benson, Angela B. Seddon, and Mikhail F. Churbanov
Opt. Mater. Express 5(8) 1722-1737 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  2. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  3. A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
    [Crossref]
  4. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  5. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
    [Crossref] [PubMed]
  6. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref] [PubMed]
  7. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref] [PubMed]
  8. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  9. B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
    [Crossref]
  10. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
    [Crossref]
  11. I. D. Aggarwal and J. S. Sanghera, “Development and infrared applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).
  12. M. Pollnau and S. Jackson, “Mid-infrared fiber lasers,” in Solid-State Mid-Infrared Laser Sources, I. Sorokina and K. Vodopyanov, eds. (Springer Verlag, Berlin, 2003), pp. 225–261.
  13. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
    [Crossref]
  14. L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1580–1587 (2012).
    [Crossref]
  15. Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
    [Crossref]
  16. Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
    [Crossref]
  17. Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
    [Crossref]
  18. F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
    [Crossref]
  19. B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
    [Crossref]
  20. H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
    [Crossref] [PubMed]
  21. L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
    [Crossref]
  22. J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres - preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
    [Crossref]
  23. W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J 27(4), 411–417 (2005).
    [Crossref]
  24. A. N. Gent, “Theory of the parallel plate viscometer,” Br. J. Appl. Phys. 11(2), 85–87 (1960).
    [Crossref]
  25. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
    [Crossref]
  26. S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6(2), 145–162 (1971).
    [Crossref]
  27. E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).
  28. Z. Tang, D. Furniss, M. Fay, N. C. Neate, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation and optical loss studies of Dy3+-doped, low Ga content, selenide chalcogenide bulk glasses and optical fibers,” in Processing, Properties, and Applications of Glass and Optical Materials: Ceramic Transactions, A. K. Varshneya, H. A. Schaeffer, K. A. Richardson, M. Wightman, and L. D. Pye, eds. (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012), pp. 193–199.
  29. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  30. W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
    [Crossref]
  31. M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
    [Crossref]
  32. A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
    [Crossref]
  33. M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
    [Crossref]
  34. B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
    [Crossref]
  35. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
    [Crossref]
  36. L. G. Aio, A. M. Efimov, and V. F. Kokorina, “Refractive index of chalcogenide glasses over a wide range of compositions,” J. Non-Cryst. Solids 27(3), 299–307 (1978).
    [Crossref]
  37. A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
    [Crossref]

2014 (7)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

2013 (3)

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
[Crossref] [PubMed]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

2012 (3)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1580–1587 (2012).
[Crossref]

2011 (2)

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

2010 (1)

2009 (2)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

2008 (2)

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

2005 (1)

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J 27(4), 411–417 (2005).
[Crossref]

2003 (1)

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

2002 (1)

I. D. Aggarwal and J. S. Sanghera, “Development and infrared applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

2001 (2)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

1999 (2)

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres - preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

1996 (1)

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

1995 (2)

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

1992 (1)

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

1978 (1)

L. G. Aio, A. M. Efimov, and V. F. Kokorina, “Refractive index of chalcogenide glasses over a wide range of compositions,” J. Non-Cryst. Solids 27(3), 299–307 (1978).
[Crossref]

1971 (1)

S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6(2), 145–162 (1971).
[Crossref]

1969 (1)

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

1960 (1)

A. N. Gent, “Theory of the parallel plate viscometer,” Br. J. Appl. Phys. 11(2), 85–87 (1960).
[Crossref]

Abdel-Moneim, N.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adam, J. L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and infrared applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

Ahn, J. T.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J 27(4), 411–417 (2005).
[Crossref]

Aio, L. G.

L. G. Aio, A. M. Efimov, and V. F. Kokorina, “Refractive index of chalcogenide glasses over a wide range of compositions,” J. Non-Cryst. Solids 27(3), 299–307 (1978).
[Crossref]

Bang, O.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Barney, E.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

Barney, E. R.

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

Belin, S.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

Benson, T. M.

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1580–1587 (2012).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Beres-Pawlik, E.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1580–1587 (2012).
[Crossref]

Bernier, M.

Bureau, B.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Camy, P.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Canat, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Caron, N.

Charpentier, F.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Cheng, Y.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Choi, Y. G.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J 27(4), 411–417 (2005).
[Crossref]

Chung, W. J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J 27(4), 411–417 (2005).
[Crossref]

Churbanov, M.

M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Clare, A. G.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

Cole, B.

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

Dantanarayana, H.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Dantanarayana, H. G.

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Doualan, J. L.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Efimov, A. M.

L. G. Aio, A. M. Efimov, and V. F. Kokorina, “Refractive index of chalcogenide glasses over a wide range of compositions,” J. Non-Cryst. Solids 27(3), 299–307 (1978).
[Crossref]

El-Amraoui, M.

Faber, E.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Fay, M.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Fortin, V.

Furniss, D.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1580–1587 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Gadret, G.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Galagan, B. I.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Gent, A. N.

A. N. Gent, “Theory of the parallel plate viscometer,” Br. J. Appl. Phys. 11(2), 85–87 (1960).
[Crossref]

Gianolio, D.

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

Hewak, D. W.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Houizot, P.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Huber, G.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jensen, T.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Jeon, D. Y.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Jóvári, P.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

King, W. A.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

Kirchhof, J.

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres - preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
[Crossref]

Kobelke, J.

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres - preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
[Crossref]

Kokorina, V. F.

L. G. Aio, A. M. Efimov, and V. F. Kokorina, “Refractive index of chalcogenide glasses over a wide range of compositions,” J. Non-Cryst. Solids 27(3), 299–307 (1978).
[Crossref]

Kryukova, E. B.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Lacourse, W. C.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

Mackenzie, J. D.

S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6(2), 145–162 (1971).
[Crossref]

Messaddeq, Y.

Miklos, R.

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

Moizan, V.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moncorgé, R.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Moneim, N. A.

Mossadegh, R.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

Nazabal, V.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Neate, N.

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

Neate, N. C.

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

Oladeji, A.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Park, B. J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J 27(4), 411–417 (2005).
[Crossref]

Payne, D. N.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Pitois, S.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Pureza, P. C.

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

Pyrkov, Y. N.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Reitter, A. M.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

Sakka, S.

S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6(2), 145–162 (1971).
[Crossref]

Sakr, H.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and infrared applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

Scheffler, M.

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres - preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
[Crossref]

Schweizer, T.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Schwuchow, A.

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres - preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
[Crossref]

Scripachev, I. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

Seddon, A. B.

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1580–1587 (2012).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Seo, H. S.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J 27(4), 411–417 (2005).
[Crossref]

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Smektala, F.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Smetanin, S. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Snyder, A. W.

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

Sojka, L.

Sójka, L.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Sreeram, A. N.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

Starecki, F.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Sujecki, S.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1580–1587 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Swiler, D. R.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

Tang, Z.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber,” Opt. Express 22(18), 21236–21252 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1580–1587 (2012).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Troles, J.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

Vallée, R.

Varshneya, A. K.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhu, H.

Br. J. Appl. Phys. (1)

A. N. Gent, “Theory of the parallel plate viscometer,” Br. J. Appl. Phys. 11(2), 85–87 (1960).
[Crossref]

Electron. Lett. (1)

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[Crossref]

Etri J (1)

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J 27(4), 411–417 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Am. Ceram. Soc. (2)

Z. Tang, D. Furniss, M. Fay, N. C. Neate, Y. Cheng, E. Barney, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “First Identification of Rare-Earth Oxide Nucleation in Chalcogenide Glasses and Implications for Fabrication of Mid-Infrared Active Fibers,” J. Am. Ceram. Soc. 97(2), 432–441 (2014).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

J. Lumin. (1)

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+-doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

J. Mater. Sci. Lett. (1)

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

J. Non-Cryst. Solids (9)

L. G. Aio, A. M. Efimov, and V. F. Kokorina, “Refractive index of chalcogenide glasses over a wide range of compositions,” J. Non-Cryst. Solids 27(3), 299–307 (1978).
[Crossref]

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[Crossref]

M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and B. I. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326–327, 301–305 (2003).
[Crossref]

S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6(2), 145–162 (1971).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11–13), 2453–2462 (2011).
[Crossref]

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres - preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

I. D. Aggarwal and J. S. Sanghera, “Development and infrared applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Mater. Lett. (1)

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Nat. Photonics (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (2)

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Opt. Mater. Express (2)

Phys. Status Solidi B (1)

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

R. Soc. Chem. Adv. (1)

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki, T. Benson, N. Neate, and D. Gianolio, “The local environment of Dy3+ in selenium-rich chalcogenide glasses,” R. Soc. Chem. Adv. 4(80), 42364–42371 (2014).

Other (2)

Z. Tang, D. Furniss, M. Fay, N. C. Neate, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation and optical loss studies of Dy3+-doped, low Ga content, selenide chalcogenide bulk glasses and optical fibers,” in Processing, Properties, and Applications of Glass and Optical Materials: Ceramic Transactions, A. K. Varshneya, H. A. Schaeffer, K. A. Richardson, M. Wightman, and L. D. Pye, eds. (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012), pp. 193–199.

M. Pollnau and S. Jackson, “Mid-infrared fiber lasers,” in Solid-State Mid-Infrared Laser Sources, I. Sorokina and K. Vodopyanov, eds. (Springer Verlag, Berlin, 2003), pp. 225–261.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Flow chart of fabrication of 500 ppmw Pr3+-doped Ge-As-Ga-Se small core fiber. (a) 500 ppmw Pr-doped Ge-As-Ga-Se glass. (b) 500 μm diameter cane (and 230 μm diameter intermediate fiber) produced by the first drawing. (c) Ge-As-Ga-Se-S glass. (d) 1.5 mm ID jacket tube produced by extrusion. (e) Assembled preform before the final fiber drawing. (f) A selection of the small core fibers produced by the second fiber drawing.

Fig. 2
Fig. 2

Viscosity-temperature curves of the core and clad. glasses used in the 500 ppmw Pr3+-doped Ge-As-Ga-Se, step-index, small core fiber. Inset expands these curves around the fiber drawing temperature. Solid curves are for clad. glass; dotted curves are for core glass.

Fig. 3
Fig. 3

DTA curves of the as-annealed core glass 500 ppmw Pr3+-doped Ge-As-Ga-Se, and clad. glass Ge-As-Ga-Se-S from which the step-index, small core fiber was fabricated. The extrusion and fiber drawing temperatures have been taken from the viscosity-temperature curves of Fig. 2. The liquidus temperatures (Tliq) were calculated using equation shown inside the Fig [26].

Fig. 4
Fig. 4

SEM-BSE images of the 500 ppmw Pr3+-doped Ge-As-Ga-Se, step-index, (a) and (c) 10 μm diameter core and (b) and (d) 15 μm diameter core fibers, and (e) transitory gap in 15 μm core fiber.

Fig. 5
Fig. 5

SEM-EDX-mapping (S, As, Ga) of the 500 ppmw Pr3+-doped (a) 10 μm diameter core and (b) 15 μm diameter core SIFs.

Fig. 6
Fig. 6

Powder XRD patterns of: (a) the as-annealed Ge-As-Ga-Se-S bulk clad. glass; (b) the 500 ppmw Pr3+-doped Ge-As-Ga-Se intermediate unclad. fiber and (c) the 500 ppmw Pr3+ doped Ge-As-Ga-Se unclad. cane. All of the XRD patterns were Kα2 stripped.

Fig. 7
Fig. 7

(a) Scanning Transmission Electron Microscopy (STEM) image of core region (spectrum 1), core/clad. interfacial region (spectrum 2) and clad. region (spectrum 3) of the 500 ppmw Pr3+-doped Ge-As-Ga-Se, step-index, 10 μm diameter core fiber. (b) TEM-EDX spectra of the three regions arrowed in Fig. 7(a).

Fig. 8
Fig. 8

HRTEM-SAED patterns and HRTEM phase contrast images of the core material region (spectrum 1 of Fig. 7(a)), the core/clad. interfacial region (spectrum 2 of Fig. 7(a)) and the clad. material region (spectrum 3 of Fig. 7(c)) indicating all fiber regions were amorphous.

Fig. 9
Fig. 9

FTIR spectra of the 500 ppmw Pr3+ doped Ge-As-Ga-Se core bulk glass and the Ge-As-Ga-Se-S clad. bulk glass used in the fabrication of the Pr3+-doped, step-index, small core fiber. Inset is taken from [21] and it shows simplified energy level diagram of Pr3+-ion with notional inter-level values.

Fig. 10
Fig. 10

Optical loss spectrum of the 500 ppmw Pr3+-doped Ge-As-Ga-Se unclad, intermediate fiber. Inset shows optical micrographs of the two best fiber cleaves used in the loss calculation.

Fig. 11
Fig. 11

Refractive index (RI) dispersion of the core/clad. glass pair and numerical aperture (NA) of the 500 ppmw Pr3+ doped Ge-As-Ga-Se, step-index, small core fiber.

Fig. 12
Fig. 12

(a), (b) Near-field images of the 10 μm diameter guiding core of the 500 ppmw Pr3+-doped SIF (length = 90.5 mm) at 1.319 μm wavelength for different input excitation, showing the fiber to be multi-mode at this wavelength.

Fig. 13
Fig. 13

PL spectrum of the 500 ppmw Pr3+ doped Ge-As-Ga-Se, step-index, 10 μm diameter small core fiber (length = 117 mm). Pump wavelength 1550 nm and pump power 50.2 mW. It is estimated that < 1/3 of the applied pump power was launched into the 10 μm core. Relevant absorption band positions are shown.

Fig. 14
Fig. 14

PL spectra of the 500 ppmw Pr3+-doped 10 μm diameter core fiber (continuous solid curve), the 500 ppmw Pr3+-doped 230 μm diameter unclad./intermediate fiber (continuous solid curve) and the 500 ppmw Pr3+-doped bulk glass (dashed curve; the bulk datum was taken from [20]). 50.2 mW pump power at 1550 nm wavelength was applied in the collection of these spectra.

Fig. 15
Fig. 15

PL decay and lifetime of the 500 ppmw Pr3+ doped Ge-As-Ga-Se, step-index, 10 μm diameter core fiber, at wavelength of 4700 nm. 64.8 mW pump power at 1550 nm wavelength was used.

Metrics