Abstract

We demonstrate formation of localized carbonaceous and siliconaceous clusters, confined to the modified region on a micron scale, when PDMS (polydimethylsiloxane) is irradiated by intense femtosecond pulses. Micro-Raman studies also suggest formation of quasi-crystalline silicon nano-clusters whose size varies with the incident laser fluence. The modified region produces broad photoluminescence whose intensity increases with laser fluence. We observed red-edge excitation effect in PDMS wherein the fluorescence from the laser modified region shifts to longer wavelengths as the excitation wavelength is increased to the red edge of the absorption band. Excitation spectra reveal four distinct absorption bands that contribute to the emission from the laser-modified region, two each ascribed to carbonaceous and siliconaceous clusters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Precipitation of silicon nanoclusters by laser direct-write

Waqas Mustafeez, Daeho Lee, Costas Grigoropoulos, and Alberto Salleo
Opt. Express 19(16) 15452-15458 (2011)

Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon

Thibault J.-Y. Derrien, Jörg Krüger, Tatiana E. Itina, Sandra Höhm, Arkadi Rosenfeld, and Jörn Bonse
Opt. Express 21(24) 29643-29655 (2013)

Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation

Fadhil A. Umran, Yang Liao, Mazin M. Elias, Koji Sugioka, Razvan Stoian, Guanghua Cheng, and Ya Cheng
Opt. Express 21(13) 15259-15267 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
    [Crossref]
  2. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
    [Crossref]
  3. D. M. Schaadt, E. T. Yu, S. Sankar, and A. E. Berkowitz, “Charge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy,” Appl. Phys. Lett. 74, 472 (1999).
    [Crossref]
  4. J. Fu, G. Li, X. Mao, and K. Fang, “Nanoscale Cementite Precipitates and Comprehensive Strengthening Mechanism of Steel,” Metall. Mater. Trans. A 42, 3797–3812 (2011).
    [Crossref]
  5. P. N. Hai, M. Yokoyama, S. Ohya, and M. Tanaka, “Spin polarized tunneling in IIIV-based heterostructures with a ferromagnetic MnAs thin film and GaAs:MnAs nanoclusters,” Phys. E Low-dimensional Syst. Nanostructures 32, 416–418 (2006).
    [Crossref]
  6. L. Shang, S. Dong, and G. U. Nienhaus, “Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications,” Nano Today 6, 401–418 (2011).
    [Crossref]
  7. H. Al Dosari and A. I. Ayesh, “Nanocluster production for solar cell applications,” J. Appl. Phys. 114, 054305 (2013).
    [Crossref]
  8. J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
    [Crossref]
  9. S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
    [Crossref]
  10. S. Hayashi, “Photoluminescence spectra of carbon clusters embedded in SiO2,” Jpn. J. Appl. Phys. 32, L274–L276 (1993).
    [Crossref]
  11. I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
    [Crossref] [PubMed]
  12. L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing SiSiO2 superlattice,” Appl. Phys. Lett. 88, 013102 (2006).
    [Crossref]
  13. M. Epifani, “Sol Gel Synthesis and Characterization of Agand Au Nanoparticles in Thin Films,,“ J. Am. Ceramic Soc. 83,2385–2393(2000).
  14. P. Gangopadhyay, R. Kesavamoorthy, K. G. M. Nair, and R. Dhandapani, “Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing,” J. Appl. Phys. 88, 4975 (2000).
    [Crossref]
  15. G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
    [Crossref]
  16. H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
    [Crossref]
  17. H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
    [Crossref]
  18. G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
    [Crossref]
  19. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
    [Crossref] [PubMed]
  20. F. Hanus, K. Kolev, A. Jadin, and L. Laude, “Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films,” Appl. Surf. Sci. 154–155, 320–323 (2000).
    [Crossref]
  21. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408 (2000).
    [Crossref]
  22. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
    [Crossref]
  23. S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
    [Crossref]
  24. X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138, 43–46 (2006).
    [Crossref]
  25. T. Gleitsmann, T. Bernhardt, and L. Wöste, “Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix,” Appl. Phys. A 82, 125–130 (2006).
    [Crossref]
  26. V. Volodin, T. Korchagina, J. Koch, and B. Chichkov, “Femtosecond laser induced formation of Si nanocrystals and amorphous Si clusters in silicon-rich nitride films,” Phys. E Low-dimensional Syst. Nanostructures 42, 1820–1823 (2010).
    [Crossref]
  27. A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Phys. Rev. B 79, 115411 (2009).
    [Crossref]
  28. A. Stalmashonak, H. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94, 193111 (2009).
    [Crossref]
  29. W. R. Creasy and J. T. Brenna, “Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films,” J. Chem. Phys. 92, 2269 (1990).
    [Crossref]
  30. K. Shibagaki, N. Takada, K. Sasaki, and K. Kadota, “Synthetic characteristics of large carbon cluster ions by laser ablation of polymers in vacuum,” J. Appl. Phys. 93, 655 (2003).
    [Crossref]
  31. A. Bulgakov, I. Ozerov, and W. Marine, “Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation,” Appl. Phys. A 79, 1591–1594 (2004).
    [Crossref]
  32. D. W. Buerle, Laser processing and chemistry, vol. 40 (Springer, 2001).
  33. D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
    [Crossref]
  34. D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
    [Crossref]
  35. S. Gupta, D. Choudhary, and A. Sarma, “Study of carbonaceous clusters in irradiated polycarbonate with uvvis spectroscopy,” J. Polym. Sci., Part B: Polym. Phys. 38, 1589–1594 (2000).
    [Crossref]
  36. V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
    [Crossref]
  37. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, and B. Qian, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
    [Crossref] [PubMed]
  38. Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
    [Crossref]
  39. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
    [Crossref]
  40. A. Kumar, F. Singh, J. Pivin, and D. Avasthi, “Photoluminescence studies of carbon clusters formed by irradiation of Si-based polymer,” Radiat. Meas. 40, 785–788 (2005).
    [Crossref]
  41. J. Pivin, M. Sendova-Vassileva, P. Colombo, and A. Martucci, “Photoluminescence of composite ceramics derived from polysiloxanes and polycarbosilanes by ion irradiation,” Mater. Sci. Eng. B 69–70, 574–577 (2000).
    [Crossref]
  42. J. C. Pivin, P. Colombo, and G. D. Sorar, “Comparison of ion irradiation effects in silicon-based preceramic thin films,” J. Am. Ceram. Soc. 83, 713–720 (2000).
    [Crossref]
  43. “Effect of proton irradiation on photoluminescent properties of PDMS-nanodiamond composites,” Nanotechnology19, 455701 (2008).
    [Crossref] [PubMed]
  44. M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, T. Marinova, and V. Krastev, “Visible luminescence from C-containing silicon oxide films,” Thin Solid Films 276, 318–322 (1996).
    [Crossref]
  45. H. He, Y. Wang, and H. Tang, “Intense ultraviolet and green photoluminescence from sol gel derived silica containing hydrogenated carbon,” J. Phys. Condens. Matter 14, 11867–11874 (2002).
    [Crossref]
  46. L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
    [Crossref]
  47. S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal raman spectroscopy of confined poly(dimethylsiloxane),” Langmuir 21, 5685–5868 (2005).
    [Crossref] [PubMed]
  48. D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultravioletvisible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” Journal of Molecular Structure 976, 274–281 (2010).
    [Crossref]
  49. A. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
    [Crossref]
  50. S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” J. Phys. Chem. C 113, 18546–18551 (2009).
    [Crossref]
  51. M. a. Gauthier, I. Stangel, T. H. Ellis, and X. X. Zhu, “A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra,” Biomaterials 26, 6440–6448 (2005).
    [Crossref] [PubMed]
  52. Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15, 377 (1982).
    [Crossref]
  53. G. Viera, S. Huet, and L. Boufendi, “Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy,” J. Appl. Phys. 90, 4175 (2001).
    [Crossref]
  54. J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
    [Crossref]
  55. G. Gouadec and P. Colomban, “Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties,” Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007).
    [Crossref]
  56. M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
    [Crossref] [PubMed]
  57. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
    [Crossref] [PubMed]
  58. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
    [Crossref]
  59. A. P. Demchenko, “The red-edge effects: 30 years of exploration,” Luminescence 17, 19–42 (2002).
    [Crossref] [PubMed]
  60. K. A. Al-Hassan and M. A. El-Bayoumi, “Large edge-excitation red shift for a merocyanine dye in poly(vinyl alcohol) polymer matrix,” Journal of Polymer Science Part B: Polymer Physics 25, 495–500 (1987).
    [Crossref]
  61. K. A. Al-Hassan and T. Azumi, “The red edge effect as a tool for investigating the origin of the anomalous fluorescence band of 9,9-bianthryl in rigid polar polymer matrices,” Chemical Physics Letters 150, 344–348 (1988).
    [Crossref]
  62. C. M. Rao, S. C. Rao, and P. B. Rao, “Red edge excitation effect in intact eye lens,” Photochemistry and Photobiology 50, 399–402 (1989).
    [Crossref] [PubMed]
  63. Banwell, Fundamentals of Molecular Spectroscopy (Mcgraw-Hill College, 1994).
  64. S. R. Gaboury and M. W. Urban, “Microwave plasma reactions of solid monomers with silicone elastomer surfaces: a spectroscopic study,” Langmuir 9, 3225–3233 (1993).
    [Crossref]
  65. D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. (Amst). 30, 1157–1161 (2008).
    [Crossref]
  66. Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
    [Crossref]
  67. G. Pacchioni and G. Ierao, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57, 818–832 (1998).
    [Crossref]
  68. K. Raghavachari, D. Ricci, and G. Pacchioni, “Optical properties of point defects in SiO2 from time-dependent density functional theory,” J. Chem. Phys. 116, 825 (2002).
    [Crossref]
  69. T. Uchino, N. Kurumoto, and N. Sagawa, “Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials,” Phys. Rev. B 73, 233203 (2006).
    [Crossref]
  70. A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116, 9889 (2002).
    [Crossref]
  71. A. Nishimura, N. Sagawa, and T. Uchino, “Structural origin of visible luminescence from silica based organici-norganic hybrid materials,” J. Phys. Chem. C 113, 4260–4262 (2009).
    [Crossref]
  72. A. Nishimura, S. Harada, and T. Uchino, “Effect of cross-linking and organic groups on the visible photoluminescence characteristics of n-octadecylsiloxanes,” The Journal of Physical Chemistry C 114, 8568–8574 (2010).
    [Crossref]

2013 (2)

M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
[Crossref] [PubMed]

H. Al Dosari and A. I. Ayesh, “Nanocluster production for solar cell applications,” J. Appl. Phys. 114, 054305 (2013).
[Crossref]

2012 (2)

J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
[Crossref]

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

2011 (3)

L. Shang, S. Dong, and G. U. Nienhaus, “Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications,” Nano Today 6, 401–418 (2011).
[Crossref]

J. Fu, G. Li, X. Mao, and K. Fang, “Nanoscale Cementite Precipitates and Comprehensive Strengthening Mechanism of Steel,” Metall. Mater. Trans. A 42, 3797–3812 (2011).
[Crossref]

Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
[Crossref]

2010 (3)

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultravioletvisible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” Journal of Molecular Structure 976, 274–281 (2010).
[Crossref]

A. Nishimura, S. Harada, and T. Uchino, “Effect of cross-linking and organic groups on the visible photoluminescence characteristics of n-octadecylsiloxanes,” The Journal of Physical Chemistry C 114, 8568–8574 (2010).
[Crossref]

V. Volodin, T. Korchagina, J. Koch, and B. Chichkov, “Femtosecond laser induced formation of Si nanocrystals and amorphous Si clusters in silicon-rich nitride films,” Phys. E Low-dimensional Syst. Nanostructures 42, 1820–1823 (2010).
[Crossref]

2009 (7)

A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Phys. Rev. B 79, 115411 (2009).
[Crossref]

A. Stalmashonak, H. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94, 193111 (2009).
[Crossref]

I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
[Crossref] [PubMed]

A. Nishimura, N. Sagawa, and T. Uchino, “Structural origin of visible luminescence from silica based organici-norganic hybrid materials,” J. Phys. Chem. C 113, 4260–4262 (2009).
[Crossref]

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” J. Phys. Chem. C 113, 18546–18551 (2009).
[Crossref]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, and B. Qian, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
[Crossref] [PubMed]

2008 (2)

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. (Amst). 30, 1157–1161 (2008).
[Crossref]

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

2007 (4)

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
[Crossref]

G. Gouadec and P. Colomban, “Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties,” Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007).
[Crossref]

2006 (6)

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

T. Uchino, N. Kurumoto, and N. Sagawa, “Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials,” Phys. Rev. B 73, 233203 (2006).
[Crossref]

P. N. Hai, M. Yokoyama, S. Ohya, and M. Tanaka, “Spin polarized tunneling in IIIV-based heterostructures with a ferromagnetic MnAs thin film and GaAs:MnAs nanoclusters,” Phys. E Low-dimensional Syst. Nanostructures 32, 416–418 (2006).
[Crossref]

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing SiSiO2 superlattice,” Appl. Phys. Lett. 88, 013102 (2006).
[Crossref]

X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138, 43–46 (2006).
[Crossref]

T. Gleitsmann, T. Bernhardt, and L. Wöste, “Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix,” Appl. Phys. A 82, 125–130 (2006).
[Crossref]

2005 (4)

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal raman spectroscopy of confined poly(dimethylsiloxane),” Langmuir 21, 5685–5868 (2005).
[Crossref] [PubMed]

M. a. Gauthier, I. Stangel, T. H. Ellis, and X. X. Zhu, “A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra,” Biomaterials 26, 6440–6448 (2005).
[Crossref] [PubMed]

A. Kumar, F. Singh, J. Pivin, and D. Avasthi, “Photoluminescence studies of carbon clusters formed by irradiation of Si-based polymer,” Radiat. Meas. 40, 785–788 (2005).
[Crossref]

2004 (3)

A. Bulgakov, I. Ozerov, and W. Marine, “Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation,” Appl. Phys. A 79, 1591–1594 (2004).
[Crossref]

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
[Crossref]

2003 (1)

K. Shibagaki, N. Takada, K. Sasaki, and K. Kadota, “Synthetic characteristics of large carbon cluster ions by laser ablation of polymers in vacuum,” J. Appl. Phys. 93, 655 (2003).
[Crossref]

2002 (4)

H. He, Y. Wang, and H. Tang, “Intense ultraviolet and green photoluminescence from sol gel derived silica containing hydrogenated carbon,” J. Phys. Condens. Matter 14, 11867–11874 (2002).
[Crossref]

A. P. Demchenko, “The red-edge effects: 30 years of exploration,” Luminescence 17, 19–42 (2002).
[Crossref] [PubMed]

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116, 9889 (2002).
[Crossref]

K. Raghavachari, D. Ricci, and G. Pacchioni, “Optical properties of point defects in SiO2 from time-dependent density functional theory,” J. Chem. Phys. 116, 825 (2002).
[Crossref]

2001 (1)

G. Viera, S. Huet, and L. Boufendi, “Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy,” J. Appl. Phys. 90, 4175 (2001).
[Crossref]

2000 (10)

A. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
[Crossref]

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
[Crossref]

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

J. Pivin, M. Sendova-Vassileva, P. Colombo, and A. Martucci, “Photoluminescence of composite ceramics derived from polysiloxanes and polycarbosilanes by ion irradiation,” Mater. Sci. Eng. B 69–70, 574–577 (2000).
[Crossref]

J. C. Pivin, P. Colombo, and G. D. Sorar, “Comparison of ion irradiation effects in silicon-based preceramic thin films,” J. Am. Ceram. Soc. 83, 713–720 (2000).
[Crossref]

F. Hanus, K. Kolev, A. Jadin, and L. Laude, “Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films,” Appl. Surf. Sci. 154–155, 320–323 (2000).
[Crossref]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408 (2000).
[Crossref]

S. Gupta, D. Choudhary, and A. Sarma, “Study of carbonaceous clusters in irradiated polycarbonate with uvvis spectroscopy,” J. Polym. Sci., Part B: Polym. Phys. 38, 1589–1594 (2000).
[Crossref]

M. Epifani, “Sol Gel Synthesis and Characterization of Agand Au Nanoparticles in Thin Films,,“ J. Am. Ceramic Soc. 83,2385–2393(2000).

P. Gangopadhyay, R. Kesavamoorthy, K. G. M. Nair, and R. Dhandapani, “Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing,” J. Appl. Phys. 88, 4975 (2000).
[Crossref]

1999 (1)

D. M. Schaadt, E. T. Yu, S. Sankar, and A. E. Berkowitz, “Charge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy,” Appl. Phys. Lett. 74, 472 (1999).
[Crossref]

1998 (1)

G. Pacchioni and G. Ierao, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57, 818–832 (1998).
[Crossref]

1997 (1)

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
[Crossref]

1996 (6)

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
[Crossref] [PubMed]

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
[Crossref]

M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, T. Marinova, and V. Krastev, “Visible luminescence from C-containing silicon oxide films,” Thin Solid Films 276, 318–322 (1996).
[Crossref]

J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
[Crossref]

1995 (1)

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

1993 (2)

S. Hayashi, “Photoluminescence spectra of carbon clusters embedded in SiO2,” Jpn. J. Appl. Phys. 32, L274–L276 (1993).
[Crossref]

S. R. Gaboury and M. W. Urban, “Microwave plasma reactions of solid monomers with silicone elastomer surfaces: a spectroscopic study,” Langmuir 9, 3225–3233 (1993).
[Crossref]

1990 (1)

W. R. Creasy and J. T. Brenna, “Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films,” J. Chem. Phys. 92, 2269 (1990).
[Crossref]

1989 (1)

C. M. Rao, S. C. Rao, and P. B. Rao, “Red edge excitation effect in intact eye lens,” Photochemistry and Photobiology 50, 399–402 (1989).
[Crossref] [PubMed]

1988 (1)

K. A. Al-Hassan and T. Azumi, “The red edge effect as a tool for investigating the origin of the anomalous fluorescence band of 9,9-bianthryl in rigid polar polymer matrices,” Chemical Physics Letters 150, 344–348 (1988).
[Crossref]

1987 (1)

K. A. Al-Hassan and M. A. El-Bayoumi, “Large edge-excitation red shift for a merocyanine dye in poly(vinyl alcohol) polymer matrix,” Journal of Polymer Science Part B: Polymer Physics 25, 495–500 (1987).
[Crossref]

1982 (1)

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15, 377 (1982).
[Crossref]

Ahn, C.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Al Dosari, H.

H. Al Dosari and A. I. Ayesh, “Nanocluster production for solar cell applications,” J. Appl. Phys. 114, 054305 (2013).
[Crossref]

Al-Hassan, K. A.

K. A. Al-Hassan and T. Azumi, “The red edge effect as a tool for investigating the origin of the anomalous fluorescence band of 9,9-bianthryl in rigid polar polymer matrices,” Chemical Physics Letters 150, 344–348 (1988).
[Crossref]

K. A. Al-Hassan and M. A. El-Bayoumi, “Large edge-excitation red shift for a merocyanine dye in poly(vinyl alcohol) polymer matrix,” Journal of Polymer Science Part B: Polymer Physics 25, 495–500 (1987).
[Crossref]

Antonova, I.

I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
[Crossref] [PubMed]

Avasthi, D.

S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
[Crossref]

A. Kumar, F. Singh, J. Pivin, and D. Avasthi, “Photoluminescence studies of carbon clusters formed by irradiation of Si-based polymer,” Radiat. Meas. 40, 785–788 (2005).
[Crossref]

Ayesh, A. I.

H. Al Dosari and A. I. Ayesh, “Nanocluster production for solar cell applications,” J. Appl. Phys. 114, 054305 (2013).
[Crossref]

Azumi, T.

K. A. Al-Hassan and T. Azumi, “The red edge effect as a tool for investigating the origin of the anomalous fluorescence band of 9,9-bianthryl in rigid polar polymer matrices,” Chemical Physics Letters 150, 344–348 (1988).
[Crossref]

Bae, S. C.

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal raman spectroscopy of confined poly(dimethylsiloxane),” Langmuir 21, 5685–5868 (2005).
[Crossref] [PubMed]

Balberg, I.

I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
[Crossref] [PubMed]

Banwell,

Banwell, Fundamentals of Molecular Spectroscopy (Mcgraw-Hill College, 1994).

Battaglin, G.

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

Berg, R.

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
[Crossref]

Berkowitz, A. E.

D. M. Schaadt, E. T. Yu, S. Sankar, and A. E. Berkowitz, “Charge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy,” Appl. Phys. Lett. 74, 472 (1999).
[Crossref]

Bernhardt, T.

T. Gleitsmann, T. Bernhardt, and L. Wöste, “Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix,” Appl. Phys. A 82, 125–130 (2006).
[Crossref]

Bhardwaj, V.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Bielawski, K. S.

M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
[Crossref] [PubMed]

Borysiak, M. D.

M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
[Crossref] [PubMed]

Boufendi, L.

G. Viera, S. Huet, and L. Boufendi, “Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy,” J. Appl. Phys. 90, 4175 (2001).
[Crossref]

Brenna, J. T.

W. R. Creasy and J. T. Brenna, “Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films,” J. Chem. Phys. 92, 2269 (1990).
[Crossref]

Buerle, D. W.

D. W. Buerle, Laser processing and chemistry, vol. 40 (Springer, 2001).

Bulgakov, A.

A. Bulgakov, I. Ozerov, and W. Marine, “Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation,” Appl. Phys. A 79, 1591–1594 (2004).
[Crossref]

Buscher, H.

J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
[Crossref]

Caccavale, F.

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

Cai, D.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultravioletvisible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” Journal of Molecular Structure 976, 274–281 (2010).
[Crossref]

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. (Amst). 30, 1157–1161 (2008).
[Crossref]

Cao, S.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Cardoso, J.

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Chadderton, L.

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

Chan, K.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
[Crossref]

Cherkov, A.

I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
[Crossref] [PubMed]

Chichkov, B.

V. Volodin, T. Korchagina, J. Koch, and B. Chichkov, “Femtosecond laser induced formation of Si nanocrystals and amorphous Si clusters in silicon-rich nitride films,” Phys. E Low-dimensional Syst. Nanostructures 42, 1820–1823 (2010).
[Crossref]

Choudhary, D.

S. Gupta, D. Choudhary, and A. Sarma, “Study of carbonaceous clusters in irradiated polycarbonate with uvvis spectroscopy,” J. Polym. Sci., Part B: Polym. Phys. 38, 1589–1594 (2000).
[Crossref]

Chung, W. H.

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Colomban, P.

G. Gouadec and P. Colomban, “Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties,” Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007).
[Crossref]

Colombo, P.

J. Pivin, M. Sendova-Vassileva, P. Colombo, and A. Martucci, “Photoluminescence of composite ceramics derived from polysiloxanes and polycarbosilanes by ion irradiation,” Mater. Sci. Eng. B 69–70, 574–577 (2000).
[Crossref]

J. C. Pivin, P. Colombo, and G. D. Sorar, “Comparison of ion irradiation effects in silicon-based preceramic thin films,” J. Am. Ceram. Soc. 83, 713–720 (2000).
[Crossref]

Corkum, P.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Coulon, P. E.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Crabbe, E. F.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
[Crossref]

Creasy, W. R.

W. R. Creasy and J. T. Brenna, “Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films,” J. Chem. Phys. 92, 2269 (1990).
[Crossref]

Dai, Y.

Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
[Crossref]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, and B. Qian, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Davis, K. M.

Dawi, E. a.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Demchenko, A. P.

A. P. Demchenko, “The red-edge effects: 30 years of exploration,” Luminescence 17, 19–42 (2002).
[Crossref] [PubMed]

Dhamodaran, S.

S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
[Crossref]

Dhandapani, R.

P. Gangopadhyay, R. Kesavamoorthy, K. G. M. Nair, and R. Dhandapani, “Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing,” J. Appl. Phys. 88, 4975 (2000).
[Crossref]

Dimova-Malinovska, D.

M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, T. Marinova, and V. Krastev, “Visible luminescence from C-containing silicon oxide films,” Thin Solid Films 276, 318–322 (1996).
[Crossref]

Dong, S.

L. Shang, S. Dong, and G. U. Nienhaus, “Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications,” Nano Today 6, 401–418 (2011).
[Crossref]

Dufour, C.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

El-Bayoumi, M. A.

K. A. Al-Hassan and M. A. El-Bayoumi, “Large edge-excitation red shift for a merocyanine dye in poly(vinyl alcohol) polymer matrix,” Journal of Polymer Science Part B: Polymer Physics 25, 495–500 (1987).
[Crossref]

Ellis, T. H.

M. a. Gauthier, I. Stangel, T. H. Ellis, and X. X. Zhu, “A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra,” Biomaterials 26, 6440–6448 (2005).
[Crossref] [PubMed]

Emfietzoglou, D.

S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
[Crossref]

Epifani, M.

M. Epifani, “Sol Gel Synthesis and Characterization of Agand Au Nanoparticles in Thin Films,,“ J. Am. Ceramic Soc. 83,2385–2393(2000).

Falter, C.

J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
[Crossref]

Fang, K.

J. Fu, G. Li, X. Mao, and K. Fang, “Nanoscale Cementite Precipitates and Comprehensive Strengthening Mechanism of Steel,” Metall. Mater. Trans. A 42, 3797–3812 (2011).
[Crossref]

Ferrari, A.

A. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
[Crossref]

Fink, D.

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Fu, J.

J. Fu, G. Li, X. Mao, and K. Fang, “Nanoscale Cementite Precipitates and Comprehensive Strengthening Mechanism of Steel,” Metall. Mater. Trans. A 42, 3797–3812 (2011).
[Crossref]

Fu, J. S.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
[Crossref]

Gaboury, S. R.

S. R. Gaboury and M. W. Urban, “Microwave plasma reactions of solid monomers with silicone elastomer surfaces: a spectroscopic study,” Langmuir 9, 3225–3233 (1993).
[Crossref]

Gacoin, T.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Gangopadhyay, P.

P. Gangopadhyay, R. Kesavamoorthy, K. G. M. Nair, and R. Dhandapani, “Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing,” J. Appl. Phys. 88, 4975 (2000).
[Crossref]

Gauthier, M. a.

M. a. Gauthier, I. Stangel, T. H. Ellis, and X. X. Zhu, “A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra,” Biomaterials 26, 6440–6448 (2005).
[Crossref] [PubMed]

Gertsvolf, M.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Giorgio, S.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
[Crossref]

Gleitsmann, T.

T. Gleitsmann, T. Bernhardt, and L. Wöste, “Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix,” Appl. Phys. A 82, 125–130 (2006).
[Crossref]

Glinka, Y. D.

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116, 9889 (2002).
[Crossref]

Gonella, F.

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

Gouadec, G.

G. Gouadec and P. Colomban, “Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties,” Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007).
[Crossref]

Graener, H.

A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Phys. Rev. B 79, 115411 (2009).
[Crossref]

A. Stalmashonak, H. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94, 193111 (2009).
[Crossref]

Granick, S.

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal raman spectroscopy of confined poly(dimethylsiloxane),” Langmuir 21, 5685–5868 (2005).
[Crossref] [PubMed]

Graubner, V.-M.

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

Grumsen, F.

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
[Crossref]

Guillois, O.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

Gupta, S.

S. Gupta, D. Choudhary, and A. Sarma, “Study of carbonaceous clusters in irradiated polycarbonate with uvvis spectroscopy,” J. Polym. Sci., Part B: Polym. Phys. 38, 1589–1594 (2000).
[Crossref]

Hai, P. N.

P. N. Hai, M. Yokoyama, S. Ohya, and M. Tanaka, “Spin polarized tunneling in IIIV-based heterostructures with a ferromagnetic MnAs thin film and GaAs:MnAs nanoclusters,” Phys. E Low-dimensional Syst. Nanostructures 32, 416–418 (2006).
[Crossref]

Hanafi, H.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
[Crossref]

Hanus, F.

F. Hanus, K. Kolev, A. Jadin, and L. Laude, “Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films,” Appl. Surf. Sci. 154–155, 320–323 (2000).
[Crossref]

Harada, S.

A. Nishimura, S. Harada, and T. Uchino, “Effect of cross-linking and organic groups on the visible photoluminescence characteristics of n-octadecylsiloxanes,” The Journal of Physical Chemistry C 114, 8568–8574 (2010).
[Crossref]

Hartstein, A.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
[Crossref]

Hayashi, S.

S. Hayashi, “Photoluminescence spectra of carbon clusters embedded in SiO2,” Jpn. J. Appl. Phys. 32, L274–L276 (1993).
[Crossref]

He, H.

H. He, Y. Wang, and H. Tang, “Intense ultraviolet and green photoluminescence from sol gel derived silica containing hydrogenated carbon,” J. Phys. Condens. Matter 14, 11867–11874 (2002).
[Crossref]

He, M.

Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
[Crossref]

Heineman, W. R.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Heise, H.

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. (Amst). 30, 1157–1161 (2008).
[Crossref]

Heise, H. M.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultravioletvisible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” Journal of Molecular Structure 976, 274–281 (2010).
[Crossref]

Hirao, K.

Hnatovsky, C.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Horsewell, A.

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
[Crossref]

Hu, X.

X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138, 43–46 (2006).
[Crossref]

Huet, S.

G. Viera, S. Huet, and L. Boufendi, “Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy,” J. Appl. Phys. 90, 4175 (2001).
[Crossref]

Huisken, F.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

Ierao, G.

G. Pacchioni and G. Ierao, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57, 818–832 (1998).
[Crossref]

Iqbal, Z.

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15, 377 (1982).
[Crossref]

Jadin, A.

F. Hanus, K. Kolev, A. Jadin, and L. Laude, “Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films,” Appl. Surf. Sci. 154–155, 320–323 (2000).
[Crossref]

Jana, N. R.

S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” J. Phys. Chem. C 113, 18546–18551 (2009).
[Crossref]

Jedrzejewski, J.

I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
[Crossref] [PubMed]

Jenkel, C. F.

M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
[Crossref] [PubMed]

Jia, G.

J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
[Crossref]

Jiang, X.

X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138, 43–46 (2006).
[Crossref]

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
[Crossref]

Jordan, R.

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

Kadota, K.

K. Shibagaki, N. Takada, K. Sasaki, and K. Kadota, “Synthetic characteristics of large carbon cluster ions by laser ablation of polymers in vacuum,” J. Appl. Phys. 93, 655 (2003).
[Crossref]

Kagan, M.

I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
[Crossref] [PubMed]

Karanovich, A.

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

Kesavamoorthy, R.

P. Gangopadhyay, R. Kesavamoorthy, K. G. M. Nair, and R. Dhandapani, “Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing,” J. Appl. Phys. 88, 4975 (2000).
[Crossref]

Khomenkov, V.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Khriachtchev, L.

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing SiSiO2 superlattice,” Appl. Phys. Lett. 88, 013102 (2006).
[Crossref]

Kim, Y.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

Klett, R.

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Koch, J.

V. Volodin, T. Korchagina, J. Koch, and B. Chichkov, “Femtosecond laser induced formation of Si nanocrystals and amorphous Si clusters in silicon-rich nitride films,” Phys. E Low-dimensional Syst. Nanostructures 42, 1820–1823 (2010).
[Crossref]

Kohn, B.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

Kolev, K.

F. Hanus, K. Kolev, A. Jadin, and L. Laude, “Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films,” Appl. Surf. Sci. 154–155, 320–323 (2000).
[Crossref]

Korchagina, T.

V. Volodin, T. Korchagina, J. Koch, and B. Chichkov, “Femtosecond laser induced formation of Si nanocrystals and amorphous Si clusters in silicon-rich nitride films,” Phys. E Low-dimensional Syst. Nanostructures 42, 1820–1823 (2010).
[Crossref]

Kötz, R.

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

Krastev, V.

M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, T. Marinova, and V. Krastev, “Visible luminescence from C-containing silicon oxide films,” Thin Solid Films 276, 318–322 (1996).
[Crossref]

Kuckuk, R.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultravioletvisible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” Journal of Molecular Structure 976, 274–281 (2010).
[Crossref]

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. (Amst). 30, 1157–1161 (2008).
[Crossref]

Kumar, A.

A. Kumar, F. Singh, J. Pivin, and D. Avasthi, “Photoluminescence studies of carbon clusters formed by irradiation of Si-based polymer,” Radiat. Meas. 40, 785–788 (2005).
[Crossref]

Kurumoto, N.

T. Uchino, N. Kurumoto, and N. Sagawa, “Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials,” Phys. Rev. B 73, 233203 (2006).
[Crossref]

Lafosse, X.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Laude, L.

F. Hanus, K. Kolev, A. Jadin, and L. Laude, “Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films,” Appl. Surf. Sci. 154–155, 320–323 (2000).
[Crossref]

Ledoux, G.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

Lee, H.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal raman spectroscopy of confined poly(dimethylsiloxane),” Langmuir 21, 5685–5868 (2005).
[Crossref] [PubMed]

Lee, M.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

Lee, S. H.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Lee, Y.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

Li, G.

J. Fu, G. Li, X. Mao, and K. Fang, “Nanoscale Cementite Precipitates and Comprehensive Strengthening Mechanism of Steel,” Metall. Mater. Trans. A 42, 3797–3812 (2011).
[Crossref]

Liao, H. B.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
[Crossref]

Lim, K.-S.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

Limbach, P. A.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Lin, S. H.

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116, 9889 (2002).
[Crossref]

Lin, Z.

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal raman spectroscopy of confined poly(dimethylsiloxane),” Langmuir 21, 5685–5868 (2005).
[Crossref] [PubMed]

Lippert, T.

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

Liu, C.

J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
[Crossref]

Liu, H.

J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
[Crossref]

Liu, Y.

Lu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Ludwig, W.

J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
[Crossref]

Ma, G.

Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
[Crossref]

Ma, H.

Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Mailly, D.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Mao, X.

J. Fu, G. Li, X. Mao, and K. Fang, “Nanoscale Cementite Precipitates and Comprehensive Strengthening Mechanism of Steel,” Metall. Mater. Trans. A 42, 3797–3812 (2011).
[Crossref]

Marchi, G.

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

Marine, W.

A. Bulgakov, I. Ozerov, and W. Marine, “Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation,” Appl. Phys. A 79, 1591–1594 (2004).
[Crossref]

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
[Crossref]

Marinova, T.

M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, T. Marinova, and V. Krastev, “Visible luminescence from C-containing silicon oxide films,” Thin Solid Films 276, 318–322 (1996).
[Crossref]

Martucci, A.

J. Pivin, M. Sendova-Vassileva, P. Colombo, and A. Martucci, “Photoluminescence of composite ceramics derived from polysiloxanes and polycarbosilanes by ion irradiation,” Mater. Sci. Eng. B 69–70, 574–577 (2000).
[Crossref]

Mattei, G.

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

Mazzoldi, P.

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

Mebel, A. M.

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116, 9889 (2002).
[Crossref]

Mitsuyu, T.

Miura, K.

Monnet, I.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Montiel, R.

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Muralidharan, R.

S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
[Crossref]

Nair, K. G. M.

P. Gangopadhyay, R. Kesavamoorthy, K. G. M. Nair, and R. Dhandapani, “Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing,” J. Appl. Phys. 88, 4975 (2000).
[Crossref]

Nelson, D.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
[Crossref]

Neyer, A.

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultravioletvisible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” Journal of Molecular Structure 976, 274–281 (2010).
[Crossref]

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. (Amst). 30, 1157–1161 (2008).
[Crossref]

Nie, Z.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

Nienhaus, G. U.

L. Shang, S. Dong, and G. U. Nienhaus, “Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications,” Nano Today 6, 401–418 (2011).
[Crossref]

Nikcevic, I.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Nishimura, A.

A. Nishimura, S. Harada, and T. Uchino, “Effect of cross-linking and organic groups on the visible photoluminescence characteristics of n-octadecylsiloxanes,” The Journal of Physical Chemistry C 114, 8568–8574 (2010).
[Crossref]

A. Nishimura, N. Sagawa, and T. Uchino, “Structural origin of visible luminescence from silica based organici-norganic hybrid materials,” J. Phys. Chem. C 113, 4260–4262 (2009).
[Crossref]

Novikov, S.

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing SiSiO2 superlattice,” Appl. Phys. Lett. 88, 013102 (2006).
[Crossref]

Nuyken, O.

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

Ohya, S.

P. N. Hai, M. Yokoyama, S. Ohya, and M. Tanaka, “Spin polarized tunneling in IIIV-based heterostructures with a ferromagnetic MnAs thin film and GaAs:MnAs nanoclusters,” Phys. E Low-dimensional Syst. Nanostructures 32, 416–418 (2006).
[Crossref]

Ou, H.

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
[Crossref]

Ozerov, I.

A. Bulgakov, I. Ozerov, and W. Marine, “Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation,” Appl. Phys. A 79, 1591–1594 (2004).
[Crossref]

Pacchioni, G.

K. Raghavachari, D. Ricci, and G. Pacchioni, “Optical properties of point defects in SiO2 from time-dependent density functional theory,” J. Chem. Phys. 116, 825 (2002).
[Crossref]

G. Pacchioni and G. Ierao, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57, 818–832 (1998).
[Crossref]

Paillard, V.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

Pathak, A.

S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
[Crossref]

Patrone, L.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
[Crossref]

Perruchas, S.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Piruska, A.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Pivin, J.

A. Kumar, F. Singh, J. Pivin, and D. Avasthi, “Photoluminescence studies of carbon clusters formed by irradiation of Si-based polymer,” Radiat. Meas. 40, 785–788 (2005).
[Crossref]

J. Pivin, M. Sendova-Vassileva, P. Colombo, and A. Martucci, “Photoluminescence of composite ceramics derived from polysiloxanes and polycarbosilanes by ion irradiation,” Mater. Sci. Eng. B 69–70, 574–577 (2000).
[Crossref]

Pivin, J. C.

J. C. Pivin, P. Colombo, and G. D. Sorar, “Comparison of ion irradiation effects in silicon-based preceramic thin films,” J. Am. Ceram. Soc. 83, 713–720 (2000).
[Crossref]

Porterat, D.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

Posner, J. D.

M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
[Crossref] [PubMed]

Qian, B.

Qiu, J.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138, 43–46 (2006).
[Crossref]

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
[Crossref]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408 (2000).
[Crossref]

Qu, S.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
[Crossref]

Quaranta, A.

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

Raghavachari, K.

K. Raghavachari, D. Ricci, and G. Pacchioni, “Optical properties of point defects in SiO2 from time-dependent density functional theory,” J. Chem. Phys. 116, 825 (2002).
[Crossref]

Rajeev, P.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Rana, F.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
[Crossref]

Rao, C. M.

C. M. Rao, S. C. Rao, and P. B. Rao, “Red edge excitation effect in intact eye lens,” Photochemistry and Photobiology 50, 399–402 (1989).
[Crossref] [PubMed]

Rao, P. B.

C. M. Rao, S. C. Rao, and P. B. Rao, “Red edge excitation effect in intact eye lens,” Photochemistry and Photobiology 50, 399–402 (1989).
[Crossref] [PubMed]

Rao, S. C.

C. M. Rao, S. C. Rao, and P. B. Rao, “Red edge excitation effect in intact eye lens,” Photochemistry and Photobiology 50, 399–402 (1989).
[Crossref] [PubMed]

Rasanen, M.

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing SiSiO2 superlattice,” Appl. Phys. Lett. 88, 013102 (2006).
[Crossref]

Ray, S. C.

S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” J. Phys. Chem. C 113, 18546–18551 (2009).
[Crossref]

Rayner, D.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Reynaud, C.

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

Ricci, D.

K. Raghavachari, D. Ricci, and G. Pacchioni, “Optical properties of point defects in SiO2 from time-dependent density functional theory,” J. Chem. Phys. 116, 825 (2002).
[Crossref]

Rizza, G.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Robertson, J.

A. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
[Crossref]

Rottwitt, K.

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
[Crossref]

Rrdam, T.

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
[Crossref]

Safarov, V. I.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
[Crossref]

Sagawa, N.

A. Nishimura, N. Sagawa, and T. Uchino, “Structural origin of visible luminescence from silica based organici-norganic hybrid materials,” J. Phys. Chem. C 113, 4260–4262 (2009).
[Crossref]

T. Uchino, N. Kurumoto, and N. Sagawa, “Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials,” Phys. Rev. B 73, 233203 (2006).
[Crossref]

Saha, A.

S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” J. Phys. Chem. C 113, 18546–18551 (2009).
[Crossref]

Sankar, S.

D. M. Schaadt, E. T. Yu, S. Sankar, and A. E. Berkowitz, “Charge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy,” Appl. Phys. Lett. 74, 472 (1999).
[Crossref]

Sarkar, R.

S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” J. Phys. Chem. C 113, 18546–18551 (2009).
[Crossref]

Sarma, A.

S. Gupta, D. Choudhary, and A. Sarma, “Study of carbonaceous clusters in irradiated polycarbonate with uvvis spectroscopy,” J. Polym. Sci., Part B: Polym. Phys. 38, 1589–1594 (2000).
[Crossref]

Sasaki, K.

K. Shibagaki, N. Takada, K. Sasaki, and K. Kadota, “Synthetic characteristics of large carbon cluster ions by laser ablation of polymers in vacuum,” J. Appl. Phys. 93, 655 (2003).
[Crossref]

Schaadt, D. M.

D. M. Schaadt, E. T. Yu, S. Sankar, and A. E. Berkowitz, “Charge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy,” Appl. Phys. Lett. 74, 472 (1999).
[Crossref]

Schmoldt, A.

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Schnyder, B.

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

Seifert, G.

A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Phys. Rev. B 79, 115411 (2009).
[Crossref]

A. Stalmashonak, H. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94, 193111 (2009).
[Crossref]

Seliskar, C. J.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Sendova-Vassileva, M.

J. Pivin, M. Sendova-Vassileva, P. Colombo, and A. Martucci, “Photoluminescence of composite ceramics derived from polysiloxanes and polycarbosilanes by ion irradiation,” Mater. Sci. Eng. B 69–70, 574–577 (2000).
[Crossref]

M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, T. Marinova, and V. Krastev, “Visible luminescence from C-containing silicon oxide films,” Thin Solid Films 276, 318–322 (1996).
[Crossref]

Sentis, M.

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
[Crossref]

Shang, L.

L. Shang, S. Dong, and G. U. Nienhaus, “Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications,” Nano Today 6, 401–418 (2011).
[Crossref]

Sheng, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
[Crossref]

Shi, P.

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

Shibagaki, K.

K. Shibagaki, N. Takada, K. Sasaki, and K. Kadota, “Synthetic characteristics of large carbon cluster ions by laser ablation of polymers in vacuum,” J. Appl. Phys. 93, 655 (2003).
[Crossref]

Shimizu, M.

Simova, E.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Singh, F.

A. Kumar, F. Singh, J. Pivin, and D. Avasthi, “Photoluminescence studies of carbon clusters formed by irradiation of Si-based polymer,” Radiat. Meas. 40, 785–788 (2005).
[Crossref]

Skuratov, V.

I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
[Crossref] [PubMed]

Sniadecki, N. J.

M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
[Crossref] [PubMed]

Sorar, G. D.

J. C. Pivin, P. Colombo, and G. D. Sorar, “Comparison of ion irradiation effects in silicon-based preceramic thin films,” J. Am. Ceram. Soc. 83, 713–720 (2000).
[Crossref]

Srinivasan, T.

S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
[Crossref]

Stalmashonak, A.

A. Stalmashonak, H. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94, 193111 (2009).
[Crossref]

A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Phys. Rev. B 79, 115411 (2009).
[Crossref]

Stangel, I.

M. a. Gauthier, I. Stangel, T. H. Ellis, and X. X. Zhu, “A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra,” Biomaterials 26, 6440–6448 (2005).
[Crossref] [PubMed]

Sugimoto, N.

Takada, N.

K. Shibagaki, N. Takada, K. Sasaki, and K. Kadota, “Synthetic characteristics of large carbon cluster ions by laser ablation of polymers in vacuum,” J. Appl. Phys. 93, 655 (2003).
[Crossref]

Tanaka, M.

P. N. Hai, M. Yokoyama, S. Ohya, and M. Tanaka, “Spin polarized tunneling in IIIV-based heterostructures with a ferromagnetic MnAs thin film and GaAs:MnAs nanoclusters,” Phys. E Low-dimensional Syst. Nanostructures 32, 416–418 (2006).
[Crossref]

Tang, H.

H. He, Y. Wang, and H. Tang, “Intense ultraviolet and green photoluminescence from sol gel derived silica containing hydrogenated carbon,” J. Phys. Condens. Matter 14, 11867–11874 (2002).
[Crossref]

Taylor, R.

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Tiwari, S.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
[Crossref]

Toulemonde, M.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Tzenov, N.

M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, T. Marinova, and V. Krastev, “Visible luminescence from C-containing silicon oxide films,” Thin Solid Films 276, 318–322 (1996).
[Crossref]

Uchino, T.

A. Nishimura, S. Harada, and T. Uchino, “Effect of cross-linking and organic groups on the visible photoluminescence characteristics of n-octadecylsiloxanes,” The Journal of Physical Chemistry C 114, 8568–8574 (2010).
[Crossref]

A. Nishimura, N. Sagawa, and T. Uchino, “Structural origin of visible luminescence from silica based organici-norganic hybrid materials,” J. Phys. Chem. C 113, 4260–4262 (2009).
[Crossref]

T. Uchino, N. Kurumoto, and N. Sagawa, “Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials,” Phys. Rev. B 73, 233203 (2006).
[Crossref]

Ulysse, C.

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

Unal, A.

A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Phys. Rev. B 79, 115411 (2009).
[Crossref]

Urban, M. W.

S. R. Gaboury and M. W. Urban, “Microwave plasma reactions of solid monomers with silicone elastomer surfaces: a spectroscopic study,” Langmuir 9, 3225–3233 (1993).
[Crossref]

Vazquez, H.

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

Vazquez, M. H.

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Veprek, S.

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15, 377 (1982).
[Crossref]

Viera, G.

G. Viera, S. Huet, and L. Boufendi, “Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy,” J. Appl. Phys. 90, 4175 (2001).
[Crossref]

Vogt, B. D.

M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
[Crossref] [PubMed]

Volodin, V.

V. Volodin, T. Korchagina, J. Koch, and B. Chichkov, “Femtosecond laser induced formation of Si nanocrystals and amorphous Si clusters in silicon-rich nitride films,” Phys. E Low-dimensional Syst. Nanostructures 42, 1820–1823 (2010).
[Crossref]

Wang,

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Wang, J.

J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
[Crossref]

Wang, Y.

H. He, Y. Wang, and H. Tang, “Intense ultraviolet and green photoluminescence from sol gel derived silica containing hydrogenated carbon,” J. Phys. Condens. Matter 14, 11867–11874 (2002).
[Crossref]

Wokaun, A.

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

Wong, G. K. L.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
[Crossref]

Wöste, L.

T. Gleitsmann, T. Bernhardt, and L. Wöste, “Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix,” Appl. Phys. A 82, 125–130 (2006).
[Crossref]

Xiao, R. F.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
[Crossref]

Xie, X.

J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
[Crossref]

Yan, X.

Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
[Crossref]

Yokoyama, M.

P. N. Hai, M. Yokoyama, S. Ohya, and M. Tanaka, “Spin polarized tunneling in IIIV-based heterostructures with a ferromagnetic MnAs thin film and GaAs:MnAs nanoclusters,” Phys. E Low-dimensional Syst. Nanostructures 32, 416–418 (2006).
[Crossref]

Yoo, H.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

Yu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Yu, E. T.

D. M. Schaadt, E. T. Yu, S. Sankar, and A. E. Berkowitz, “Charge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy,” Appl. Phys. Lett. 74, 472 (1999).
[Crossref]

Yu, G.

Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
[Crossref]

Yu, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
[Crossref]

Zeng, H.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
[Crossref]

Zhang, B.

J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
[Crossref]

Zhang, K.

J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
[Crossref]

Zhao, C.

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
[Crossref]

Zhao, Q.

X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138, 43–46 (2006).
[Crossref]

Zhu, B.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, and B. Qian, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
[Crossref] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

Zhu, C.

X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138, 43–46 (2006).
[Crossref]

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
[Crossref]

Zhu, F.

J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
[Crossref]

Zhu, X. X.

M. a. Gauthier, I. Stangel, T. H. Ellis, and X. X. Zhu, “A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra,” Biomaterials 26, 6440–6448 (2005).
[Crossref] [PubMed]

Zi, J.

J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
[Crossref]

Zyubin, A. S.

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116, 9889 (2002).
[Crossref]

Appl. Phys. A (2)

T. Gleitsmann, T. Bernhardt, and L. Wöste, “Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix,” Appl. Phys. A 82, 125–130 (2006).
[Crossref]

A. Bulgakov, I. Ozerov, and W. Marine, “Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation,” Appl. Phys. A 79, 1591–1594 (2004).
[Crossref]

Appl. Phys. A Mater. Sci. Process. (1)

G. Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, and A. Quaranta, “Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere,” Appl. Phys. A Mater. Sci. Process. 63, 403–407 (1996).
[Crossref]

Appl. Phys. B (1)

Y. Dai, G. Yu, M. He, H. Ma, X. Yan, and G. Ma, “High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass,” Appl. Phys. B 103, 663–667 (2011).
[Crossref]

Appl. Phys. Lett. (9)

A. Stalmashonak, H. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94, 193111 (2009).
[Crossref]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O2 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90, 181109 (2007).
[Crossref]

S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046 (2004).
[Crossref]

L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing SiSiO2 superlattice,” Appl. Phys. Lett. 88, 013102 (2006).
[Crossref]

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett. 68, 1377 (1996).
[Crossref]

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1 (1997).
[Crossref]

D. M. Schaadt, E. T. Yu, S. Sankar, and A. E. Berkowitz, “Charge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy,” Appl. Phys. Lett. 74, 472 (1999).
[Crossref]

J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200 (1996).
[Crossref]

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[Crossref]

Appl. Surf. Sci. (2)

F. Hanus, K. Kolev, A. Jadin, and L. Laude, “Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films,” Appl. Surf. Sci. 154–155, 320–323 (2000).
[Crossref]

J. Wang, F. Zhu, B. Zhang, H. Liu, G. Jia, and C. Liu, “Photoluminescence and reflectivity of polymethyl-methacrylate implanted by low-energy carbon ions at high fluences,” Appl. Surf. Sci. 261, 653–658 (2012).
[Crossref]

Applied Physics B (2)

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, and R. Berg, “Ge nanoclusters in pecvd-deposited glass after heat treatment and electron-beam irradiation,” Applied Physics B 87, 327–331 (2007).
[Crossref]

H. Ou, T. Rrdam, K. Rottwitt, F. Grumsen, A. Horsewell, R. Berg, and P. Shi, “Ge nanoclusters in pecvd-deposited glass caused only by heat treatment,” Applied Physics B 91, 177–181 (2008).
[Crossref]

Biomaterials (1)

M. a. Gauthier, I. Stangel, T. H. Ellis, and X. X. Zhu, “A new method for quantifying the intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra,” Biomaterials 26, 6440–6448 (2005).
[Crossref] [PubMed]

Chemical Physics Letters (1)

K. A. Al-Hassan and T. Azumi, “The red edge effect as a tool for investigating the origin of the anomalous fluorescence band of 9,9-bianthryl in rigid polar polymer matrices,” Chemical Physics Letters 150, 344–348 (1988).
[Crossref]

J. Am. Ceram. Soc. (1)

J. C. Pivin, P. Colombo, and G. D. Sorar, “Comparison of ion irradiation effects in silicon-based preceramic thin films,” J. Am. Ceram. Soc. 83, 713–720 (2000).
[Crossref]

J. Am. Ceramic Soc. (1)

M. Epifani, “Sol Gel Synthesis and Characterization of Agand Au Nanoparticles in Thin Films,,“ J. Am. Ceramic Soc. 83,2385–2393(2000).

J. Appl. Phys. (5)

P. Gangopadhyay, R. Kesavamoorthy, K. G. M. Nair, and R. Dhandapani, “Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing,” J. Appl. Phys. 88, 4975 (2000).
[Crossref]

H. Al Dosari and A. I. Ayesh, “Nanocluster production for solar cell applications,” J. Appl. Phys. 114, 054305 (2013).
[Crossref]

K. Shibagaki, N. Takada, K. Sasaki, and K. Kadota, “Synthetic characteristics of large carbon cluster ions by laser ablation of polymers in vacuum,” J. Appl. Phys. 93, 655 (2003).
[Crossref]

L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, 3829 (2000).
[Crossref]

G. Viera, S. Huet, and L. Boufendi, “Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy,” J. Appl. Phys. 90, 4175 (2001).
[Crossref]

J. Chem. Phys. (3)

K. Raghavachari, D. Ricci, and G. Pacchioni, “Optical properties of point defects in SiO2 from time-dependent density functional theory,” J. Chem. Phys. 116, 825 (2002).
[Crossref]

A. S. Zyubin, A. M. Mebel, S. H. Lin, and Y. D. Glinka, “Photoluminescence of silanone and dioxasilyrane groups in silicon oxides: A theoretical study,” J. Chem. Phys. 116, 9889 (2002).
[Crossref]

W. R. Creasy and J. T. Brenna, “Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films,” J. Chem. Phys. 92, 2269 (1990).
[Crossref]

J. Phys. C Solid State Phys. (1)

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15, 377 (1982).
[Crossref]

J. Phys. Chem. C (2)

S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” J. Phys. Chem. C 113, 18546–18551 (2009).
[Crossref]

A. Nishimura, N. Sagawa, and T. Uchino, “Structural origin of visible luminescence from silica based organici-norganic hybrid materials,” J. Phys. Chem. C 113, 4260–4262 (2009).
[Crossref]

J. Phys. Condens. Matter (1)

H. He, Y. Wang, and H. Tang, “Intense ultraviolet and green photoluminescence from sol gel derived silica containing hydrogenated carbon,” J. Phys. Condens. Matter 14, 11867–11874 (2002).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (1)

S. Gupta, D. Choudhary, and A. Sarma, “Study of carbonaceous clusters in irradiated polycarbonate with uvvis spectroscopy,” J. Polym. Sci., Part B: Polym. Phys. 38, 1589–1594 (2000).
[Crossref]

Journal of Molecular Structure (1)

D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Raman, mid-infrared, near-infrared and ultravioletvisible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials,” Journal of Molecular Structure 976, 274–281 (2010).
[Crossref]

Journal of Polymer Science Part B: Polymer Physics (1)

K. A. Al-Hassan and M. A. El-Bayoumi, “Large edge-excitation red shift for a merocyanine dye in poly(vinyl alcohol) polymer matrix,” Journal of Polymer Science Part B: Polymer Physics 25, 495–500 (1987).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Hayashi, “Photoluminescence spectra of carbon clusters embedded in SiO2,” Jpn. J. Appl. Phys. 32, L274–L276 (1993).
[Crossref]

Lab Chip (2)

M. D. Borysiak, K. S. Bielawski, N. J. Sniadecki, C. F. Jenkel, B. D. Vogt, and J. D. Posner, “Simple replica micromolding of biocompatible styrenic elastomers,” Lab Chip 13, 2773–2784 (2013).
[Crossref] [PubMed]

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Langmuir (2)

S. C. Bae, H. Lee, Z. Lin, and S. Granick, “Chemical imaging in a surface forces apparatus: confocal raman spectroscopy of confined poly(dimethylsiloxane),” Langmuir 21, 5685–5868 (2005).
[Crossref] [PubMed]

S. R. Gaboury and M. W. Urban, “Microwave plasma reactions of solid monomers with silicone elastomer surfaces: a spectroscopic study,” Langmuir 9, 3225–3233 (1993).
[Crossref]

Luminescence (1)

A. P. Demchenko, “The red-edge effects: 30 years of exploration,” Luminescence 17, 19–42 (2002).
[Crossref] [PubMed]

Macromolecules (1)

V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, and A. Wokaun, “Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm,” Macromolecules 37, 5936–5943 (2004).
[Crossref]

Mater. Sci. Eng. B (1)

J. Pivin, M. Sendova-Vassileva, P. Colombo, and A. Martucci, “Photoluminescence of composite ceramics derived from polysiloxanes and polycarbosilanes by ion irradiation,” Mater. Sci. Eng. B 69–70, 574–577 (2000).
[Crossref]

Metall. Mater. Trans. A (1)

J. Fu, G. Li, X. Mao, and K. Fang, “Nanoscale Cementite Precipitates and Comprehensive Strengthening Mechanism of Steel,” Metall. Mater. Trans. A 42, 3797–3812 (2011).
[Crossref]

Nano Today (1)

L. Shang, S. Dong, and G. U. Nienhaus, “Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications,” Nano Today 6, 401–418 (2011).
[Crossref]

Nanotechnology (1)

I. Antonova, A. Cherkov, V. Skuratov, M. Kagan, J. Jedrzejewski, and I. Balberg, “Low-dimensional effects in a three-dimensional system of Si quantum dots modified by high-energy ion irradiation,” Nanotechnology 20, 185401 (2009).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

D. Fink, R. Klett, L. Chadderton, J. Cardoso, R. Montiel, H. Vazquez, and A. Karanovich, “Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR,” Nucl. Instrum. Methods Phys. Res., Sect. B 111, 303–314 (1996).
[Crossref]

Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms (1)

S. Dhamodaran, A. Pathak, D. Avasthi, T. Srinivasan, R. Muralidharan, and D. Emfietzoglou, “Surface modification of InGaAs/GaAs heterostructures by swift heavy ion irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 257, 301–306 (2007).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (Amst). (1)

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. (Amst). 30, 1157–1161 (2008).
[Crossref]

Photochemistry and Photobiology (1)

C. M. Rao, S. C. Rao, and P. B. Rao, “Red edge excitation effect in intact eye lens,” Photochemistry and Photobiology 50, 399–402 (1989).
[Crossref] [PubMed]

Phys. E Low-dimensional Syst. Nanostructures (2)

P. N. Hai, M. Yokoyama, S. Ohya, and M. Tanaka, “Spin polarized tunneling in IIIV-based heterostructures with a ferromagnetic MnAs thin film and GaAs:MnAs nanoclusters,” Phys. E Low-dimensional Syst. Nanostructures 32, 416–418 (2006).
[Crossref]

V. Volodin, T. Korchagina, J. Koch, and B. Chichkov, “Femtosecond laser induced formation of Si nanocrystals and amorphous Si clusters in silicon-rich nitride films,” Phys. E Low-dimensional Syst. Nanostructures 42, 1820–1823 (2010).
[Crossref]

Phys. Rev. B (6)

A. Unal, A. Stalmashonak, G. Seifert, and H. Graener, “Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Phys. Rev. B 79, 115411 (2009).
[Crossref]

G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size,” Phys. Rev. B 62, 15942–15951 (2000).
[Crossref]

G. Rizza, P. E. Coulon, V. Khomenkov, C. Dufour, I. Monnet, M. Toulemonde, S. Perruchas, T. Gacoin, D. Mailly, X. Lafosse, C. Ulysse, and E. a. Dawi, “Rational description of the ion-beam shaping mechanism,” Phys. Rev. B 86, 035450 (2012).
[Crossref]

G. Pacchioni and G. Ierao, “Ab initio theory of optical transitions of point defects in SiO2,” Phys. Rev. B 57, 818–832 (1998).
[Crossref]

T. Uchino, N. Kurumoto, and N. Sagawa, “Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials,” Phys. Rev. B 73, 233203 (2006).
[Crossref]

A. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).
[Crossref]

Phys. Rev. Lett. (1)

P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. Taylor, V. Bhardwaj, D. Rayner, and P. Corkum, “Memory in Nonlinear Ionization of Transparent Solids,” Phys. Rev. Lett. 97, 253001 (2006).
[Crossref]

Prog. Cryst. Growth Charact. Mater. (1)

G. Gouadec and P. Colomban, “Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties,” Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007).
[Crossref]

Radiat. Eff. Defects Solids (1)

D. Fink, W. H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M. H. Vazquez, and Wang, “Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry,“ Radiat. Eff. Defects Solids 133, 193–208 (1995).
[Crossref]

Radiat. Meas. (1)

A. Kumar, F. Singh, J. Pivin, and D. Avasthi, “Photoluminescence studies of carbon clusters formed by irradiation of Si-based polymer,” Radiat. Meas. 40, 785–788 (2005).
[Crossref]

Solid State Commun. (1)

X. Hu, Q. Zhao, X. Jiang, C. Zhu, and J. Qiu, “Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass,” Solid State Commun. 138, 43–46 (2006).
[Crossref]

The Journal of Physical Chemistry C (1)

A. Nishimura, S. Harada, and T. Uchino, “Effect of cross-linking and organic groups on the visible photoluminescence characteristics of n-octadecylsiloxanes,” The Journal of Physical Chemistry C 114, 8568–8574 (2010).
[Crossref]

Thin Solid Films (1)

M. Sendova-Vassileva, N. Tzenov, D. Dimova-Malinovska, T. Marinova, and V. Krastev, “Visible luminescence from C-containing silicon oxide films,” Thin Solid Films 276, 318–322 (1996).
[Crossref]

Other (3)

“Effect of proton irradiation on photoluminescent properties of PDMS-nanodiamond composites,” Nanotechnology19, 455701 (2008).
[Crossref] [PubMed]

Banwell, Fundamentals of Molecular Spectroscopy (Mcgraw-Hill College, 1994).

D. W. Buerle, Laser processing and chemistry, vol. 40 (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) SEM image of cross-section of a modified region fabricated 300 μm below the surface with a speed of 100 μm/s and a pulse energy of 200 nJ. (b) EDS spectra from different spots within and outside the modified region, identified by coloured circles in (a). The spectrum shown in black represents an average over three regions.

Fig. 2
Fig. 2

Element maps of (a) carbon and (b) oxygen within and outside the modified region, outlined by the dashed circle. The scale represents elemental concentration normalized to the unmodified region.

Fig. 3
Fig. 3

(a) Photoluminescence from the laser modified PDMS induced by coherent light at a wavelength of 488 nm. Inset shows the variation of the PL intensity with laser pulse energy. (b) Confocal microscope image, obtained at an excitation wavelength of 488nm, of an array of laser modified spots under different irradiation conditions. See text for details.

Fig. 4
Fig. 4

(a) Raman spectra of laser modified (red) and pristine (black) PDMS at an excitation wavelength of 532 nm. Note the strong photoluminescence superimposing the Raman scattering arising from the modified region. (b) Raman peak shift (around 484 cm−1) in laser modified PDMS at different pulse energies relative to pristine PDMS with an excitation wavelength of 488 nm.

Fig. 5
Fig. 5

The light absorption spectrum of the pristine (black) and laser modified PDMS (red). Inset shows the repeating monomer unit of PDMS.

Fig. 6
Fig. 6

(a) Fluorescence emission spectra at different excitation wavelengths. (b) Red-edge excitation effect in laser modified PDMS for the three peaks identified in (a). Inset shows variation of fluorescence intensity of the three peaks as a function of excitation wavelength.

Fig. 7
Fig. 7

Fluorescence excitation spectra at different emission wavelengths. Dashed lines trace the red shift of absorption peaks, identified a-d, with excitation wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ( D ) = ω ( D ) ω o = A ( a / D ) γ

Metrics