Abstract

NASA Langley Research Center (LaRC) has a long history of developing pulsed 2-μm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful progress spanning around two decades. This article covers the 2-μm laser development from early research to current state-of-the-art instrumentation and projected future space missions. This applies to both global wind and carbon dioxide active remote sensing. A brief historical perspective of Tm:Ho work by early researchers is also given.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of an airborne triple-pulsed 2  μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements

Tamer F. Refaat, Upendra N. Singh, Jirong Yu, Mulugeta Petros, Syed Ismail, Michael J. Kavaya, and Kenneth J. Davis
Appl. Opt. 54(6) 1387-1398 (2015)

Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide

Grady J. Koch, Amin N. Dharamsi, Colleen M. Fitzgerald, and John C. McCarthy
Appl. Opt. 39(21) 3664-3669 (2000)

Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement

Tamer F. Refaat, Upendra N. Singh, Jirong Yu, Mulugeta Petros, Ruben Remus, and Syed Ismail
Appl. Opt. 55(15) 4232-4246 (2016)

References

  • View by:
  • |
  • |
  • |

  1. National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (The National Academies Press, 2007).
  2. P. Ingmann, P. Bensi, Y. Duran, A. Griva, and P. Clissold, “A-Scope – advanced space carbon and climate observation of planet earth”, ESA Report for Assessment SP-1313/1 Candidate Earth Explorer Core Missions, (European Space Agency, 2008).
  3. ASCENDS Science Definition and Planning Workshop Report (University of Michigan, 2008).
  4. J. Lawrence, Differential Absorption Lidar for the Total Column Measurement of Atmospheric Co2 from Space (University of Leicester, 2011).
  5. D. Hammerling, A. Michalak, and S. Kawa, “Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2,” J. Geophys. Res. Atmos. 117(D6), D06306 (2012).
    [Crossref]
  6. L. Johnson, J. Guesic, and L. Van Uitert, “Efficient, high-power coherent emission from Ho3+ ions in yttrium aluminum garnet, assisted by energy transfer,” Appl. Phys. Lett. 8(8), 200–202 (1966).
    [Crossref]
  7. E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
    [Crossref]
  8. E. Duczynski, G. Huber, V. Ostroumov, and I. Shcherbakov, “CW double cross pumping of the 5I7-5I8 laser transition in Ho3+ doped garnets,” Appl. Phys. Lett. 48(23), 1562–1563 (1986).
    [Crossref]
  9. R. Allen, L. Esterowitz, L. Goldberg, J. Weller, and M. Storm, “Diode-pumped 2µm holmium laser,” Electron. Lett. 22(18), 947 (1986).
    [Crossref]
  10. G. Kintz, L. Esterowitz, and R. Allen, “CW Diode-pumped Tm3+, Ho3+:YAG 2.1 µm room-temperature laser,” Electron. Lett. 23(12), 616 (1987).
    [Crossref]
  11. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
    [Crossref] [PubMed]
  12. E. D. Filer, C. A. Morrison, N. P. Barnes, and B. M. Walsh, “YLF isomorphs for Ho and Tm laser applications,” in Advanced Solid State Lasers, Vol. 20 of 1994 OSA Proceedings Series (Optical Society of America, 1994), pp. 127–130.
  13. N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers I: Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
    [Crossref]
  14. N. P. Barnes, W. J. Rodriquez, and B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13(12), 2872–2882 (1996).
    [Crossref]
  15. U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
    [Crossref]
  16. U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, and E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, Vol. 19 of 1998 OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 194–196.
  17. J. Yu, A. Braud, M. Petros, and U. N. Singh, “600 mJ, double-pulsed Ho amplifier,” in Advanced Solid State Lasers, Vol. 68 of 2002 OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 236–239.
  18. J. Yu, A. Braud, and M. Petros, “600-mJ, double-pulse 2-µm laser,” Opt. Lett. 28(7), 540–542 (2003).
    [Crossref] [PubMed]
  19. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
    [Crossref] [PubMed]
  20. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
    [Crossref]
  21. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [Crossref]
  22. T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005), Chap. 9.
  23. U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
    [Crossref]
  24. G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
    [Crossref]
  25. T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
    [Crossref]
  26. T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.
  27. G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
    [Crossref]
  28. M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
    [Crossref]
  29. G. Koch, J. Beyon, L. Cowen, M. Kavaya, and M. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sens. 8(1), 083662 (2014).
    [Crossref]
  30. J. Yu, M. Petros, K. Reithmaier, Y. Bai, B. Trieu, T. Refaat, M. Kavaya, U. Singh, and S. Ismail, “A 2-micron pulsed integrated path differential absorption lidar development for atmospheric CO2 concentartion measurements,” in Proceedings of the 26th International Laser Radar Conference, (Porto Heli, Greece, 2012).
  31. U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
    [Crossref]
  32. G. D. Emmitt, “Feasibility and science merits of a hybrid technology DWL,” in Proceedings of the 11th Coherent Laser Radar Conference, Great Malvern, England, 1–6 July 2001.
  33. M. Kavaya, “Laser and Lidar Technology Development for Highly Accurate Vertical Profiles of Vector Wind Velocity from Earth Orbit,” Presented at the Coherent Optical Technologies and Applications, Boston, MA, 13–16 July 2008.
    [Crossref]
  34. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47(7), 944–956 (2008).
    [Crossref] [PubMed]
  35. T. Refaat, U. Singh, J. Yu, M. Petros, S. Ismail, M. Kavaya, and K. Davis, “Evaluation of an airborne triple-pulse 2 μm IPDA lidar for simultaneous and independent water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
    [Crossref]
  36. Y. Bai, J. Yu, T. Wong, S. Chen, M. Petros, R. Menzies, and U. Singh, “Single-mode, high repetition rate, compact Ho:YLF laser for space-borne lidar applications,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper AW1P.4.

2015 (1)

2014 (3)

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

G. Koch, J. Beyon, L. Cowen, M. Kavaya, and M. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sens. 8(1), 083662 (2014).
[Crossref]

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

2012 (2)

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

D. Hammerling, A. Michalak, and S. Kawa, “Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2,” J. Geophys. Res. Atmos. 117(D6), D06306 (2012).
[Crossref]

2011 (1)

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

2010 (2)

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

2009 (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

2008 (1)

2006 (1)

2004 (1)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

2003 (1)

1997 (1)

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

1996 (2)

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers I: Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

N. P. Barnes, W. J. Rodriquez, and B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13(12), 2872–2882 (1996).
[Crossref]

1991 (1)

1987 (1)

G. Kintz, L. Esterowitz, and R. Allen, “CW Diode-pumped Tm3+, Ho3+:YAG 2.1 µm room-temperature laser,” Electron. Lett. 23(12), 616 (1987).
[Crossref]

1986 (2)

E. Duczynski, G. Huber, V. Ostroumov, and I. Shcherbakov, “CW double cross pumping of the 5I7-5I8 laser transition in Ho3+ doped garnets,” Appl. Phys. Lett. 48(23), 1562–1563 (1986).
[Crossref]

R. Allen, L. Esterowitz, L. Goldberg, J. Weller, and M. Storm, “Diode-pumped 2µm holmium laser,” Electron. Lett. 22(18), 947 (1986).
[Crossref]

1971 (1)

E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
[Crossref]

1966 (1)

L. Johnson, J. Guesic, and L. Van Uitert, “Efficient, high-power coherent emission from Ho3+ ions in yttrium aluminum garnet, assisted by energy transfer,” Appl. Phys. Lett. 8(8), 200–202 (1966).
[Crossref]

Abedin, N.

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

Allen, R.

G. Kintz, L. Esterowitz, and R. Allen, “CW Diode-pumped Tm3+, Ho3+:YAG 2.1 µm room-temperature laser,” Electron. Lett. 23(12), 616 (1987).
[Crossref]

R. Allen, L. Esterowitz, L. Goldberg, J. Weller, and M. Storm, “Diode-pumped 2µm holmium laser,” Electron. Lett. 22(18), 947 (1986).
[Crossref]

Bai, Y.

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
[Crossref] [PubMed]

Barnes, B.

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

Barnes, B. W.

Barnes, N.

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

N. P. Barnes, W. J. Rodriquez, and B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13(12), 2872–2882 (1996).
[Crossref]

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers I: Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

Beyon, J.

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

G. Koch, J. Beyon, L. Cowen, M. Kavaya, and M. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sens. 8(1), 083662 (2014).
[Crossref]

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

Beyon, J. Y.

Braud, A.

Chen, S.

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
[Crossref] [PubMed]

Chicklis, E.

E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
[Crossref]

Choi, Y.

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Collins, J.

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Cowen, L.

G. Koch, J. Beyon, L. Cowen, M. Kavaya, and M. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sens. 8(1), 083662 (2014).
[Crossref]

Davis, K.

T. Refaat, U. Singh, J. Yu, M. Petros, S. Ismail, M. Kavaya, and K. Davis, “Evaluation of an airborne triple-pulse 2 μm IPDA lidar for simultaneous and independent water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[Crossref]

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

Davis, K. J.

Demoz, B.

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

DeYoung, R.

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Diaz, L.

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

Duczynski, E.

E. Duczynski, G. Huber, V. Ostroumov, and I. Shcherbakov, “CW double cross pumping of the 5I7-5I8 laser transition in Ho3+ doped garnets,” Appl. Phys. Lett. 48(23), 1562–1563 (1986).
[Crossref]

Emmitt, G. D.

G. D. Emmitt, “Feasibility and science merits of a hybrid technology DWL,” in Proceedings of the 11th Coherent Laser Radar Conference, Great Malvern, England, 1–6 July 2001.

Esterowitz, L.

G. Kintz, L. Esterowitz, and R. Allen, “CW Diode-pumped Tm3+, Ho3+:YAG 2.1 µm room-temperature laser,” Electron. Lett. 23(12), 616 (1987).
[Crossref]

R. Allen, L. Esterowitz, L. Goldberg, J. Weller, and M. Storm, “Diode-pumped 2µm holmium laser,” Electron. Lett. 22(18), 947 (1986).
[Crossref]

Fay, J.

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

Filer, E. D.

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers I: Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

Folweiler, R.

E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
[Crossref]

Gabbe, D.

E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
[Crossref]

Gibert, F.

Goldberg, L.

R. Allen, L. Esterowitz, L. Goldberg, J. Weller, and M. Storm, “Diode-pumped 2µm holmium laser,” Electron. Lett. 22(18), 947 (1986).
[Crossref]

Grant, M.

G. Koch, J. Beyon, L. Cowen, M. Kavaya, and M. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sens. 8(1), 083662 (2014).
[Crossref]

Guesic, J.

L. Johnson, J. Guesic, and L. Van Uitert, “Efficient, high-power coherent emission from Ho3+ ions in yttrium aluminum garnet, assisted by energy transfer,” Appl. Phys. Lett. 8(8), 200–202 (1966).
[Crossref]

Hale, C. P.

Hammerling, D.

D. Hammerling, A. Michalak, and S. Kawa, “Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2,” J. Geophys. Res. Atmos. 117(D6), D06306 (2012).
[Crossref]

Henderson, S. W.

Huber, G.

E. Duczynski, G. Huber, V. Ostroumov, and I. Shcherbakov, “CW double cross pumping of the 5I7-5I8 laser transition in Ho3+ doped garnets,” Appl. Phys. Lett. 48(23), 1562–1563 (1986).
[Crossref]

Huffaker, A. V.

Ismail, S.

T. Refaat, U. Singh, J. Yu, M. Petros, S. Ismail, M. Kavaya, and K. Davis, “Evaluation of an airborne triple-pulse 2 μm IPDA lidar for simultaneous and independent water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[Crossref]

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47(7), 944–956 (2008).
[Crossref] [PubMed]

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

Jenssen, H.

E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
[Crossref]

Johnson, L.

L. Johnson, J. Guesic, and L. Van Uitert, “Efficient, high-power coherent emission from Ho3+ ions in yttrium aluminum garnet, assisted by energy transfer,” Appl. Phys. Lett. 8(8), 200–202 (1966).
[Crossref]

Kavaya, M.

T. Refaat, U. Singh, J. Yu, M. Petros, S. Ismail, M. Kavaya, and K. Davis, “Evaluation of an airborne triple-pulse 2 μm IPDA lidar for simultaneous and independent water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[Crossref]

G. Koch, J. Beyon, L. Cowen, M. Kavaya, and M. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sens. 8(1), 083662 (2014).
[Crossref]

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

Kavaya, M. J.

Kawa, S.

D. Hammerling, A. Michalak, and S. Kawa, “Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2,” J. Geophys. Res. Atmos. 117(D6), D06306 (2012).
[Crossref]

Kintz, G.

G. Kintz, L. Esterowitz, and R. Allen, “CW Diode-pumped Tm3+, Ho3+:YAG 2.1 µm room-temperature laser,” Electron. Lett. 23(12), 616 (1987).
[Crossref]

Koch, G.

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

G. Koch, J. Beyon, L. Cowen, M. Kavaya, and M. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sens. 8(1), 083662 (2014).
[Crossref]

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

Koch, G. J.

Lee, C. J.

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers I: Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

Lewis, J.

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Linz, A.

E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
[Crossref]

Lockard, G.

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

Mack, T.

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Magee, J. R.

Michalak, A.

D. Hammerling, A. Michalak, and S. Kawa, “Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2,” J. Geophys. Res. Atmos. 117(D6), D06306 (2012).
[Crossref]

Modlin, E.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

Modlin, E. A.

Morrison, C. A.

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers I: Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

Naiman, C.

E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
[Crossref]

Notari, A.

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Ostroumov, V.

E. Duczynski, G. Huber, V. Ostroumov, and I. Shcherbakov, “CW double cross pumping of the 5I7-5I8 laser transition in Ho3+ doped garnets,” Appl. Phys. Lett. 48(23), 1562–1563 (1986).
[Crossref]

Petros, M.

T. Refaat, U. Singh, J. Yu, M. Petros, S. Ismail, M. Kavaya, and K. Davis, “Evaluation of an airborne triple-pulse 2 μm IPDA lidar for simultaneous and independent water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[Crossref]

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47(7), 944–956 (2008).
[Crossref] [PubMed]

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
[Crossref] [PubMed]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

J. Yu, A. Braud, and M. Petros, “600-mJ, double-pulse 2-µm laser,” Opt. Lett. 28(7), 540–542 (2003).
[Crossref] [PubMed]

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

Petzar, P.

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

Petzar, P. J.

Refaat, T.

T. Refaat, U. Singh, J. Yu, M. Petros, S. Ismail, M. Kavaya, and K. Davis, “Evaluation of an airborne triple-pulse 2 μm IPDA lidar for simultaneous and independent water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[Crossref]

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

Reithmaier, K.

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

Remus, R.

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

Rodriquez, W. J.

Rubio, M.

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

Shcherbakov, I.

E. Duczynski, G. Huber, V. Ostroumov, and I. Shcherbakov, “CW double cross pumping of the 5I7-5I8 laser transition in Ho3+ doped garnets,” Appl. Phys. Lett. 48(23), 1562–1563 (1986).
[Crossref]

Singh, U.

T. Refaat, U. Singh, J. Yu, M. Petros, S. Ismail, M. Kavaya, and K. Davis, “Evaluation of an airborne triple-pulse 2 μm IPDA lidar for simultaneous and independent water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[Crossref]

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

Singh, U. N.

Storm, M.

R. Allen, L. Esterowitz, L. Goldberg, J. Weller, and M. Storm, “Diode-pumped 2µm holmium laser,” Electron. Lett. 22(18), 947 (1986).
[Crossref]

Trieu, B.

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

Trieu, B. C.

Van Uitert, L.

L. Johnson, J. Guesic, and L. Van Uitert, “Efficient, high-power coherent emission from Ho3+ ions in yttrium aluminum garnet, assisted by energy transfer,” Appl. Phys. Lett. 8(8), 200–202 (1966).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

N. P. Barnes, W. J. Rodriquez, and B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13(12), 2872–2882 (1996).
[Crossref]

Weller, J.

R. Allen, L. Esterowitz, L. Goldberg, J. Weller, and M. Storm, “Diode-pumped 2µm holmium laser,” Electron. Lett. 22(18), 947 (1986).
[Crossref]

Williams-Byrd, J.

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

Woll, S.

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

Yu, J.

T. Refaat, U. Singh, J. Yu, M. Petros, S. Ismail, M. Kavaya, and K. Davis, “Evaluation of an airborne triple-pulse 2 μm IPDA lidar for simultaneous and independent water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[Crossref]

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47(7), 944–956 (2008).
[Crossref] [PubMed]

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
[Crossref] [PubMed]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

J. Yu, A. Braud, and M. Petros, “600-mJ, double-pulse 2-µm laser,” Opt. Lett. 28(7), 540–542 (2003).
[Crossref] [PubMed]

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

L. Johnson, J. Guesic, and L. Van Uitert, “Efficient, high-power coherent emission from Ho3+ ions in yttrium aluminum garnet, assisted by energy transfer,” Appl. Phys. Lett. 8(8), 200–202 (1966).
[Crossref]

E. Chicklis, C. Naiman, R. Folweiler, D. Gabbe, H. Jenssen, and A. Linz, “High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19(4), 119–120 (1971).
[Crossref]

E. Duczynski, G. Huber, V. Ostroumov, and I. Shcherbakov, “CW double cross pumping of the 5I7-5I8 laser transition in Ho3+ doped garnets,” Appl. Phys. Lett. 48(23), 1562–1563 (1986).
[Crossref]

Electron. Lett. (2)

R. Allen, L. Esterowitz, L. Goldberg, J. Weller, and M. Storm, “Diode-pumped 2µm holmium laser,” Electron. Lett. 22(18), 947 (1986).
[Crossref]

G. Kintz, L. Esterowitz, and R. Allen, “CW Diode-pumped Tm3+, Ho3+:YAG 2.1 µm room-temperature laser,” Electron. Lett. 23(12), 616 (1987).
[Crossref]

IEEE Geosci. Remote Sens. (1)

T. Refaat, S. Ismail, G. Koch, T. Mack, A. Notari, J. Collins, J. Lewis, R. DeYoung, Y. Choi, N. Abedin, and U. Singh, “Backscatter 2-μm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm lasers I: Theoretical,” IEEE J. Quantum Electron. 32(1), 92–103 (1996).
[Crossref]

J. Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

J. Appl. Remote Sens. (3)

G. Koch, J. Beyon, E. Modlin, P. Petzar, S. Woll, M. Petros, J. Yu, and M. Kavaya, “Side-scan Doppler lidar for offshore wind energy applications,” J. Appl. Remote Sens. 6(1), 063562 (2012).
[Crossref]

G. Koch, J. Beyon, L. Cowen, M. Kavaya, and M. Grant, “Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar,” J. Appl. Remote Sens. 8(1), 083662 (2014).
[Crossref]

G. Koch, J. Beyon, P. Petzar, M. Petros, J. Yu, B. Trieu, M. Kavaya, U. Singh, E. Modlin, B. Barnes, and B. Demoz, “Field testing of a high-energy 2-μm Doppler lidar,” J. Appl. Remote Sens. 4(1), 043512 (2010).
[Crossref]

J. Atmos. Ocean. Technol. (1)

M. Kavaya, J. Beyon, G. Koch, M. Petros, P. Petzar, U. Singh, B. Trieu, and J. Yu, “The Doppler aerosol wind (DAWN) airborne, wind-profiling, coherent-detection lidar system: overview and preliminary flight results,” J. Atmos. Ocean. Technol. 31(4), 826–842 (2014).
[Crossref]

J. Geophys. Res. Atmos. (1)

D. Hammerling, A. Michalak, and S. Kawa, “Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2,” J. Geophys. Res. Atmos. 117(D6), D06306 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (3)

U. Singh, J. Williams-Byrd, N. Barnes, J. Yu, M. Petros, G. Lockard, and E. Modlin, “Diode-pumped 2-µm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[Crossref]

U. Singh, J. Yu, M. Petros, S. Chen, M. Kavaya, B. Trieu, Y. Bai, P. Petzar, E. Modlin, G. Koch, and J. Beyon, “Advances in high energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 Measurements,” Proc. SPIE 7832, 783202 (2010).
[Crossref]

U. Singh, J. Yu, M. Petros, T. Refaat, R. Remus, J. Fay, and K. Reithmaier, “Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurements,” Proc. SPIE 9246, 924602 (2014).
[Crossref]

Other (13)

G. D. Emmitt, “Feasibility and science merits of a hybrid technology DWL,” in Proceedings of the 11th Coherent Laser Radar Conference, Great Malvern, England, 1–6 July 2001.

M. Kavaya, “Laser and Lidar Technology Development for Highly Accurate Vertical Profiles of Vector Wind Velocity from Earth Orbit,” Presented at the Coherent Optical Technologies and Applications, Boston, MA, 13–16 July 2008.
[Crossref]

Y. Bai, J. Yu, T. Wong, S. Chen, M. Petros, R. Menzies, and U. Singh, “Single-mode, high repetition rate, compact Ho:YLF laser for space-borne lidar applications,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper AW1P.4.

T. Refaat, S. Ismail, G. Koch, L. Diaz, K. Davis, M. Rubio, N. Abedin, and U. Singh, “Filed testing of a two-micron DIAL system for profiling atmospheric carbon dioxide,” in Proceedings of the 25th Laser Radar Conference, (St. Petersburg, Russia, 2010), pp. 866–869.

J. Yu, M. Petros, K. Reithmaier, Y. Bai, B. Trieu, T. Refaat, M. Kavaya, U. Singh, and S. Ismail, “A 2-micron pulsed integrated path differential absorption lidar development for atmospheric CO2 concentartion measurements,” in Proceedings of the 26th International Laser Radar Conference, (Porto Heli, Greece, 2012).

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, and E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output energy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, Vol. 19 of 1998 OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 194–196.

J. Yu, A. Braud, M. Petros, and U. N. Singh, “600 mJ, double-pulsed Ho amplifier,” in Advanced Solid State Lasers, Vol. 68 of 2002 OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. 236–239.

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005), Chap. 9.

E. D. Filer, C. A. Morrison, N. P. Barnes, and B. M. Walsh, “YLF isomorphs for Ho and Tm laser applications,” in Advanced Solid State Lasers, Vol. 20 of 1994 OSA Proceedings Series (Optical Society of America, 1994), pp. 127–130.

National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (The National Academies Press, 2007).

P. Ingmann, P. Bensi, Y. Duran, A. Griva, and P. Clissold, “A-Scope – advanced space carbon and climate observation of planet earth”, ESA Report for Assessment SP-1313/1 Candidate Earth Explorer Core Missions, (European Space Agency, 2008).

ASCENDS Science Definition and Planning Workshop Report (University of Michigan, 2008).

J. Lawrence, Differential Absorption Lidar for the Total Column Measurement of Atmospheric Co2 from Space (University of Leicester, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Laser Risk Reduction Program (LaRC-GSFC). NASA Funded Program (2002-2010).
Fig. 2
Fig. 2 Early version of laser head containing laser rod and pump LDAs and 22 water channels (left); Conductively-cooled laser head with no water channels (right).
Fig. 3
Fig. 3 Liquid cooled Doppler wind lidar transmitter for ground and airborne deployment (left); Schematic of conductively cooled Doppler wind lidar transmitter for space deployment (right).
Fig. 4
Fig. 4 Parallel technology and science tracks for technology development and validation and science use at NASA LaRC for 2-micron, wind-profiling lidar system development. Acronyms presented in figure: ATIP-Advanced Technology Initiatives Program; LRRP-Laser Risk Reduction Program; DAWN-Doppler Aerosol WiNd lidar; AIR-Airborne; IIP-Instrument Incubator Program (DAWN and DAWN-AIR2); AITT-Airborne Instrument Technology Transition (DAWN-AIR1); WLS-Wind Lidar Science; GRIP-Genesis and Rapid Intensification Processes; SBIR-Small Business Innovation Research; IPP-Innovative Partnerships Program; ACT-Advanced Component Technologies.
Fig. 5
Fig. 5 (Left) Comparison of the CO2 and H2O integrated optical depths derived using the HITRAN database for line parameters and US Standard model for metrological profiles. Vertical color coded lines mark selected wavelengths for the three laser pulses, for simultaneous CO2 measurements with two different weighting functions. (Right) Corresponding color coded peak-normalized weighting functions for the selected CO2 on-line wavelength [35].

Tables (4)

Tables Icon

Table 1 General and specific attributes of the 2-μm laser for global wind and CO2 active remote sensing.

Tables Icon

Table 2 Summary of the state-of-the-art pulsed 2-µm laser technologies implementations as active transmitters for global wind and carbon dioxide ground-based and airborne remote sensing instruments.

Tables Icon

Table 3 Requirements of 2-µm laser transmitter for global wind measurements.

Tables Icon

Table 4 Comparison of CO2 active remote sensing state-of-the-art 2-µm laser transmitters, developed at NASA LaRC, with space requirements

Metrics