Abstract

This paper presents the electro-optical characteristics of polarization-independent holographic gratings (HGs) recorded in polymer-dispersed liquid crystals (PDLCs) using off-resonant laser beam. The key mechanism is based on the low light absorbance by the materials used, which enables a slow polymerization-induced phase separation. The off-resonant light can penetrate through the cell without much energy loss (absorbance) and can be uniformly absorbed across the LC cell to produce uniform PDLC structures. The intensity-modulated interference field, which is generated by two linearly polarized off-resonant laser beams, is adopted to record the HGs. The fabricated HGs are electrically switchable and polarization independent. Moreover, the diffractions of the HGs fabricated using off-resonant light is better than those produced by resonant light.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent holographic gratings based on azo-dye-doped polymer-dispersed liquid-crystal films

Andy Ying-Guey Fuh, Che-Chang Chen, Ko-Ting Cheng, Cheng-Kai Liu, and Wei-Ko Chen
Appl. Opt. 49(2) 275-280 (2010)

Study of the dynamic formation of transmission gratings recorded in photopolymers and holographic polymer-dispersed liquid crystals

Sébastien Massenot, Jean-Luc Kaiser, Raymond Chevallier, and Yvon Renotte
Appl. Opt. 43(29) 5489-5497 (2004)

Polarization holographic grating based on azo-dye-doped polymer-ball-type polymer-dispersed liquid crystals

Andy Ying-Guey Fuh, Chia-Rong Lee, and Ting-Shan Mo
J. Opt. Soc. Am. B 19(11) 2590-2594 (2002)

References

  • View by:
  • |
  • |
  • |

  1. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  2. A. Y. G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).
  3. A. Y.-G. Fuh, C.-C. Chen, C.-K. Liu, and K.-T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17(9), 7088–7094 (2009).
    [Crossref] [PubMed]
  4. Y.-D. Chen, A. Y.-G. Fuh, and K.-T. Cheng, “Particular thermally induced phase separation of liquid crystal and poly(N-vinyl carbazole) films and its application,” Opt. Express 20(15), 16777–16784 (2012).
  5. Y.-H. Lin, H. Ren, and S.-T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
    [Crossref]
  6. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
    [Crossref]
  7. R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid crystal (PDLC) films,” Jpn. J. Appl. Phys. 30(Part 2, No. 4A), L616–L618 (1991).
    [Crossref]
  8. T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4), 4007–4010 (2000).
    [Crossref] [PubMed]
  9. Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44(5A), 3115–3120 (2005).
  10. S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
    [Crossref]
  11. N. Kawatsuki, E. Uchida, and H. Ono, “Formation of pure polarization gratings in 4-methoxyazobenzene containing polymer films using off-resonant laser light,” Appl. Phys. Lett. 83(22), 4544–4546 (2003).
    [Crossref]
  12. L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
    [Crossref] [PubMed]
  13. R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
    [Crossref] [PubMed]
  14. R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed Liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
    [Crossref]
  15. D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ. 39(7), 333–335 (1962).
    [Crossref]
  16. W. Lee and C. S. Chiu, “Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Lett. 26(8), 521–523 (2001).
    [Crossref] [PubMed]
  17. P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
    [Crossref]

2012 (1)

2010 (1)

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

2009 (1)

2006 (1)

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed Liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

2005 (2)

R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
[Crossref] [PubMed]

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44(5A), 3115–3120 (2005).

2004 (1)

Y.-H. Lin, H. Ren, and S.-T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

2003 (2)

A. Y. G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).

N. Kawatsuki, E. Uchida, and H. Ono, “Formation of pure polarization gratings in 4-methoxyazobenzene containing polymer films using off-resonant laser light,” Appl. Phys. Lett. 83(22), 4544–4546 (2003).
[Crossref]

2001 (1)

2000 (2)

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4), 4007–4010 (2000).
[Crossref] [PubMed]

1997 (1)

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

1991 (1)

R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid crystal (PDLC) films,” Jpn. J. Appl. Phys. 30(Part 2, No. 4A), L616–L618 (1991).
[Crossref]

1986 (1)

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

1962 (1)

D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ. 39(7), 333–335 (1962).
[Crossref]

Chen, C.-C.

Chen, W.

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Chen, Y.-D.

Cheng, K.-T.

Chien, L.-C.

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

Chiu, C. S.

De Sio, L.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

Doane, J. W.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Ferjani, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

Fuh, A. Y. G.

A. Y. G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).

Fuh, A. Y.-G.

Gong, X.

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Kang, S.-W.

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

Kawatsuki, N.

N. Kawatsuki, E. Uchida, and H. Ono, “Formation of pure polarization gratings in 4-methoxyazobenzene containing polymer films using off-resonant laser light,” Appl. Phys. Lett. 83(22), 4544–4546 (2003).
[Crossref]

Kim, J.-H.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4), 4007–4010 (2000).
[Crossref] [PubMed]

Kumar, S.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44(5A), 3115–3120 (2005).

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4), 4007–4010 (2000).
[Crossref] [PubMed]

Lee, C.-R.

A. Y. G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).

Lee, W.

Lin, Y.-H.

Y.-H. Lin, H. Ren, and S.-T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

Liu, C.-K.

Ono, H.

N. Kawatsuki, E. Uchida, and H. Ono, “Formation of pure polarization gratings in 4-methoxyazobenzene containing polymer films using off-resonant laser light,” Appl. Phys. Lett. 83(22), 4544–4546 (2003).
[Crossref]

Park, J. O.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44(5A), 3115–3120 (2005).

Qian, T.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4), 4007–4010 (2000).
[Crossref] [PubMed]

Qiu, L.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44(5A), 3115–3120 (2005).

Ramsey, R. A.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed Liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
[Crossref] [PubMed]

Ren, H.

Y.-H. Lin, H. Ren, and S.-T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

Sato, S.

R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid crystal (PDLC) films,” Jpn. J. Appl. Phys. 30(Part 2, No. 4A), L616–L618 (1991).
[Crossref]

Serak, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

Sharma, S. C.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed Liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
[Crossref] [PubMed]

Sprunt, S.

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

Srinivasarao, M.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44(5A), 3115–3120 (2005).

Swinehart, D. F.

D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ. 39(7), 333–335 (1962).
[Crossref]

Tabiryan, N.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

Tang, G.

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Taylor, P. L.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4), 4007–4010 (2000).
[Crossref] [PubMed]

Uchida, E.

N. Kawatsuki, E. Uchida, and H. Ono, “Formation of pure polarization gratings in 4-methoxyazobenzene containing polymer films using off-resonant laser light,” Appl. Phys. Lett. 83(22), 4544–4546 (2003).
[Crossref]

Umeton, C.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

Vaghela, K.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed Liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Veltri, A.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44(5A), 3115–3120 (2005).

Wu, B.-G.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Wu, P.

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Wu, S.-T.

Y.-H. Lin, H. Ren, and S.-T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

Wu, X.

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Xu, J.

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Yamaguchi, R.

R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid crystal (PDLC) films,” Jpn. J. Appl. Phys. 30(Part 2, No. 4A), L616–L618 (1991).
[Crossref]

Zhang, G.

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Zou, B.

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Zumer, S.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Adv. Mater. (1)

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

S.-W. Kang, S. Sprunt, and L.-C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[Crossref]

N. Kawatsuki, E. Uchida, and H. Ono, “Formation of pure polarization gratings in 4-methoxyazobenzene containing polymer films using off-resonant laser light,” Appl. Phys. Lett. 83(22), 4544–4546 (2003).
[Crossref]

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed Liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

P. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett. 70(10), 1224–1226 (1997).
[Crossref]

Y.-H. Lin, H. Ren, and S.-T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

J. Chem. Educ. (1)

D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ. 39(7), 333–335 (1962).
[Crossref]

Jpn. J. Appl. Phys. (3)

R. Yamaguchi and S. Sato, “Memory effects of light transmission properties in polymer-dispersed liquid crystal (PDLC) films,” Jpn. J. Appl. Phys. 30(Part 2, No. 4A), L616–L618 (1991).
[Crossref]

A. Y. G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406–4410 (2003).

Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, “Control of polymer structures in phase separated liquid crystal-polymer composite systems,” Jpn. J. Appl. Phys. 44(5A), 3115–3120 (2005).

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4), 4007–4010 (2000).
[Crossref] [PubMed]

Other (1)

S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Absorption spectrum of the mixture (K15:DPPA:RB = 80:19:1). (b) Theoretical transmittance variations of incident green and red light beams from one substrate to another of a 25 µm LC cell.
Fig. 2
Fig. 2 Cross-section SEM image of a PDLC cell after treatment with (a) green light (intensity 1 W/cm2) illumination for 20 s and (b) red light (intensity 1 W/cm2) illumination for 20 min.
Fig. 3
Fig. 3 Variations in (a) first- and (b) second-order diffraction efficiencies of HGs recorded by off-resonant intensity-modulated interference field (λ = 632.8 nm) as a function of recording time. Concentration of mixture (K15:DPPA:RB) are (◆) 50:49:1, (▲) 65:34:1, (■) 80:19:1, and (●) 84:15:1.
Fig. 4
Fig. 4 Generated HGs, recorded by illumination of two red beams (~280 mW/cm2) for (a) 5, (b) 10, (c) 20, and (d) 30 min, respectively, with spacing of 36 µm, observed under parallel-polarizer POM. P and A are the transmissive axes of polarizer and analyzer, respectively.
Fig. 5
Fig. 5 (a) First-order diffraction efficiencies as a function of polarization of probing beam. Inset is the diffraction pattern from HGs probed using a He–Ne laser beam. (b) Measured first-order diffraction efficiency of HGs as a function of applied AC (1 kHz) voltage.
Fig. 6
Fig. 6 Generated HGs, recorded by illumination of two green (resonant) beams with intensities and recording time of (a) 8.8 mW/cm2 for 45 s, (b) 37.6 mW/cm2 for 20 s, (c) 284 mW/cm2 for 6 s, and (d) 995 mW/cm2 for 5 s, respectively, with spacing of 29 µm, observed under parallel-polarizer POM. P and A are the transmissive axes of polarizer and analyzer, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= I o e αd ,

Metrics