Abstract

A single-mode 15µm core diameter ytterbium-doped phosphate photonic crystal fiber (PCF) with all solid (AS) structure was reported. 8.2 W output power with 29% slope efficiency was extracted from the AS-PCF with length of 45 cm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-mode-area neodymium-doped all-solid double-cladding silicate photonic bandgap fiber with a 32 μm core diameter

Meng Li, Longfei Wang, Shuai Han, Danping Chen, Chunlei Yu, Wei Chen, and Lili Hu
Opt. Mater. Express 8(6) 1562-1568 (2018)

Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber

Shikai Wang, Wenbin Xu, Fan Wang, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 7(6) 2012-2022 (2017)

Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers

Guancheng Gu, Fanting Kong, Thomas Hawkins, Joshua Parsons, Maxwell Jones, Christopher Dunn, Monica T. Kalichevsky-Dong, Kunimasa Saitoh, and Liang Dong
Opt. Express 22(11) 13962-13968 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
    [Crossref]
  3. X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier,” High Power Laser Sci Eng 1(3-4), 123–125 (2013).
    [Crossref]
  4. S. J. Tan, S. W. Harun, H. Arof, and H. Ahmad, “Switchable Q-switched and mode-locked erbium-doped fiber laser operating in the L-band region,” Chin. Opt. Lett. 11(7), 073201 (2013).
    [Crossref]
  5. N. Kasim, A. H. H. Al-Masoodi, F. Ahmad, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber,” Chin. Opt. Lett. 12, 31403 (2014).
    [Crossref]
  6. R. Su, P. Zhou, X. Wang, R. Tao, and X. Xu, “Kilowatt high average power narrow-linewidth nanosecond all-fiber laser,” High Power Laser Sci. Eng. 2, e3 (2014).
    [Crossref]
  7. X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref] [PubMed]
  8. S. Dasgupta, J. R. Hayes, and D. J. Richardson, “Leakage channel fibers with microstuctured cladding elements: A unique LMA platform,” Opt. Express 22(7), 8574–8584 (2014).
    [Crossref] [PubMed]
  9. V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
    [Crossref]
  10. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  11. D. Jain, C. Baskiotis, T. C. May-Smith, K. Jaesun, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
    [Crossref]
  12. C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
    [Crossref] [PubMed]
  13. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
    [Crossref] [PubMed]
  14. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
    [Crossref]
  15. L. Han, L. Liu, Z. Yu, H. Zhao, X. Song, J. Mu, X. Wu, J. Long, and X. Liu, “Dispersion compensation properties of dual-concentric core photonic crystal fibers,” Chin. Opt. Lett. 12(1), 010603 (2014).
    [Crossref]
  16. K. K. Qureshi, “Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter,” Chin. Opt. Lett. 12(2), 020605 (2014).
    [Crossref]
  17. J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
    [Crossref]
  18. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  19. Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
    [Crossref]
  20. J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
    [Crossref]
  21. C. Huang, D. Chen, H. Cai, R. Qu, and W. Chen, “Transmission characteristics of photonic crystal fiber gas cell used in frequency stabilized laser,” Chin. Opt. Lett. 12(8), 080602 (2014).
    [Crossref]
  22. Q. Xu, “Simulation on dispersion and birefringence properties of photonic crystal fiber,” Chin. Opt. Lett. 12(s1), S11302(2014).
    [Crossref]
  23. G. Zhang, Q. Zhou, C. Yu, L. Hu, and D. Chen, “Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding,” Opt. Lett. 37(12), 2259–2261 (2012).
    [Crossref] [PubMed]
  24. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
    [Crossref] [PubMed]
  25. X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7-μm laser material,” Chin. Opt. Lett. 11(12), 121601 (2013).
    [Crossref]
  26. A. Sulaiman, S. W. Harun, and H. Ahmad, “Ring microfiber coupler erbium-doped fiber laser analysis,” Chin. Opt. Lett. 12(2), 021403 (2014).
    [Crossref]
  27. W. Li, Q. Zhou, L. Zhang, S. Wang, M. Wang, C. Yu, S. Feng, D. Chen, and L. Hu, “Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method,” Chin. Opt. Lett. 11(9), 091601 (2013).
    [Crossref]
  28. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1, 52–57 (2013).
  29. L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
    [Crossref]
  30. X. Yang, Y. Chen, C. Zhao, and H. Zhang, “Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser,” Chin. Opt. Lett. 12(3), 31405 (2014).
    [Crossref]
  31. C. Wang, G. Zhou, Y. Han, W. Wang, C. Xia, and L. Hou, “Spectral evolution of NIR luminescence in a Yb3+-doped photonic crystal fiber prepared bynon-chemical vapor deposition,” Chin. Opt. Lett. 11(6), 061601 (2013).
    [Crossref]
  32. L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
    [Crossref]
  33. L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
    [Crossref]
  34. L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).
  35. L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

2015 (1)

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

2014 (20)

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).

J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
[Crossref]

C. Huang, D. Chen, H. Cai, R. Qu, and W. Chen, “Transmission characteristics of photonic crystal fiber gas cell used in frequency stabilized laser,” Chin. Opt. Lett. 12(8), 080602 (2014).
[Crossref]

Q. Xu, “Simulation on dispersion and birefringence properties of photonic crystal fiber,” Chin. Opt. Lett. 12(s1), S11302(2014).
[Crossref]

A. Sulaiman, S. W. Harun, and H. Ahmad, “Ring microfiber coupler erbium-doped fiber laser analysis,” Chin. Opt. Lett. 12(2), 021403 (2014).
[Crossref]

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

X. Yang, Y. Chen, C. Zhao, and H. Zhang, “Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser,” Chin. Opt. Lett. 12(3), 31405 (2014).
[Crossref]

N. Kasim, A. H. H. Al-Masoodi, F. Ahmad, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber,” Chin. Opt. Lett. 12, 31403 (2014).
[Crossref]

R. Su, P. Zhou, X. Wang, R. Tao, and X. Xu, “Kilowatt high average power narrow-linewidth nanosecond all-fiber laser,” High Power Laser Sci. Eng. 2, e3 (2014).
[Crossref]

X. Ma, C. Zhu, I. N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

S. Dasgupta, J. R. Hayes, and D. J. Richardson, “Leakage channel fibers with microstuctured cladding elements: A unique LMA platform,” Opt. Express 22(7), 8574–8584 (2014).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

D. Jain, C. Baskiotis, T. C. May-Smith, K. Jaesun, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

L. Han, L. Liu, Z. Yu, H. Zhao, X. Song, J. Mu, X. Wu, J. Long, and X. Liu, “Dispersion compensation properties of dual-concentric core photonic crystal fibers,” Chin. Opt. Lett. 12(1), 010603 (2014).
[Crossref]

K. K. Qureshi, “Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter,” Chin. Opt. Lett. 12(2), 020605 (2014).
[Crossref]

J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
[Crossref]

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

2013 (8)

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier,” High Power Laser Sci Eng 1(3-4), 123–125 (2013).
[Crossref]

S. J. Tan, S. W. Harun, H. Arof, and H. Ahmad, “Switchable Q-switched and mode-locked erbium-doped fiber laser operating in the L-band region,” Chin. Opt. Lett. 11(7), 073201 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

C. Wang, G. Zhou, Y. Han, W. Wang, C. Xia, and L. Hou, “Spectral evolution of NIR luminescence in a Yb3+-doped photonic crystal fiber prepared bynon-chemical vapor deposition,” Chin. Opt. Lett. 11(6), 061601 (2013).
[Crossref]

W. Li, Q. Zhou, L. Zhang, S. Wang, M. Wang, C. Yu, S. Feng, D. Chen, and L. Hu, “Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method,” Chin. Opt. Lett. 11(9), 091601 (2013).
[Crossref]

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1, 52–57 (2013).

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7-μm laser material,” Chin. Opt. Lett. 11(12), 121601 (2013).
[Crossref]

2012 (3)

2008 (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

2006 (2)

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
[Crossref] [PubMed]

Ahmad, F.

N. Kasim, A. H. H. Al-Masoodi, F. Ahmad, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber,” Chin. Opt. Lett. 12, 31403 (2014).
[Crossref]

Ahmad, H.

Alharbi, M.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Alkeskjold, T. T.

Al-Masoodi, A. H. H.

N. Kasim, A. H. H. Al-Masoodi, F. Ahmad, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber,” Chin. Opt. Lett. 12, 31403 (2014).
[Crossref]

Antipenkov, R.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Arof, H.

Ballato, J.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Baskiotis, C.

D. Jain, C. Baskiotis, T. C. May-Smith, K. Jaesun, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Bass, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Beaudou, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Benabid, F.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Bonora, S.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Bradley, T. D.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Byer, R. L.

Cai, H.

Chen, D.

Chen, D. P.

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Chen, S.

J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
[Crossref]

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
[Crossref]

Chen, W.

C. Huang, D. Chen, H. Cai, R. Qu, and W. Chen, “Transmission characteristics of photonic crystal fiber gas cell used in frequency stabilized laser,” Chin. Opt. Lett. 12(8), 080602 (2014).
[Crossref]

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Chen, Y.

X. Yang, Y. Chen, C. Zhao, and H. Zhang, “Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser,” Chin. Opt. Lett. 12(3), 31405 (2014).
[Crossref]

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Dasgupta, S.

de Vries, O.

Debord, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

Digonnet, M. J. F.

Divoky, M.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Dong, L.

Dunn, C.

Eidam, T.

C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Feng, S.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).

W. Li, Q. Zhou, L. Zhang, S. Wang, M. Wang, C. Yu, S. Feng, D. Chen, and L. Hu, “Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method,” Chin. Opt. Lett. 11(9), 091601 (2013).
[Crossref]

Fourcade-Dutin, C.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Gaida, C.

Galvanauskas, A.

Gao, Y.

J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
[Crossref]

J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
[Crossref]

Gerôme, F.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Gu, G.

Han, L.

Han, Y.

Harun, S. W.

Hawkins, T.

Hayes, J. R.

He, D.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).

He, D. B.

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Hou, J.

J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
[Crossref]

J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
[Crossref]

Hou, L.

Hu, I. N.

Hu, J.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Hu, L.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7-μm laser material,” Chin. Opt. Lett. 11(12), 121601 (2013).
[Crossref]

W. Li, Q. Zhou, L. Zhang, S. Wang, M. Wang, C. Yu, S. Feng, D. Chen, and L. Hu, “Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method,” Chin. Opt. Lett. 11(9), 091601 (2013).
[Crossref]

G. Zhang, Q. Zhou, C. Yu, L. Hu, and D. Chen, “Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding,” Opt. Lett. 37(12), 2259–2261 (2012).
[Crossref] [PubMed]

Hu, L. L.

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Huang, C.

Jaesun, K.

D. Jain, C. Baskiotis, T. C. May-Smith, K. Jaesun, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Jain, D.

D. Jain, C. Baskiotis, T. C. May-Smith, K. Jaesun, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Jambunathan, V.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Jansen, F.

C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jauregui, C.

C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jiang, S.

Jiang, Y.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Jiang, Z.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Jones, M.

Jørgensen, M. M.

Kalichevsky-Dong, M. T.

Kaplan, A.

Kasim, N.

N. Kasim, A. H. H. Al-Masoodi, F. Ahmad, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber,” Chin. Opt. Lett. 12, 31403 (2014).
[Crossref]

Kong, F.

Lægsgaard, J.

Laurila, M.

Lee, Y. W.

Li, S.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Li, W.

Li, X.

Limpert, J.

C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Liu, H.

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Liu, L.

Liu, X.

Long, J.

Lucianetti, A.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Ma, X.

May-Smith, T. C.

D. Jain, C. Baskiotis, T. C. May-Smith, K. Jaesun, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

McComb, T.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Meng, T.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Mocek, T.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Mu, J.

Munajat, Y.

N. Kasim, A. H. H. Al-Masoodi, F. Ahmad, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber,” Chin. Opt. Lett. 12, 31403 (2014).
[Crossref]

Otto, H. J.

C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Parsons, J.

Petersen, S. R.

Pilar, J.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Qiu, J.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

Qiu, J. R.

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Qu, R.

Qureshi, K. K.

Richardson, D. J.

Richardson, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Sahu, J. K.

D. Jain, C. Baskiotis, T. C. May-Smith, K. Jaesun, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

Saitoh, K.

Sawicka, M.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Sheng, Q.

Si, L.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier,” High Power Laser Sci Eng 1(3-4), 123–125 (2013).
[Crossref]

Siegman, A. E.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Sinha, S.

Slezak, O.

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

Song, X.

Stutzki, F.

C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Su, R.

R. Su, P. Zhou, X. Wang, R. Tao, and X. Xu, “Kilowatt high average power narrow-linewidth nanosecond all-fiber laser,” High Power Laser Sci. Eng. 2, e3 (2014).
[Crossref]

Sudesh, V.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Sulaiman, A.

Tan, S. J.

Tang, J.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Tang, Y.

Tao, R.

R. Su, P. Zhou, X. Wang, R. Tao, and X. Xu, “Kilowatt high average power narrow-linewidth nanosecond all-fiber laser,” High Power Laser Sci. Eng. 2, e3 (2014).
[Crossref]

Tünnermann, A.

C. Gaida, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, O. de Vries, J. Limpert, and A. Tünnermann, “Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems,” Opt. Lett. 39(2), 209–211 (2014).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Wang, B.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Wang, C.

Wang, L.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

L. Wang, W. Li, Q. Sheng, Q. Zhou, L. Zhang, L. Hu, J. Qiu, and D. Chen, “All-solid silicate photonic crystal fiber laser with 13.1 W output power and 64.5% slope efficiency,” J. Lightwave Technol. 32(6), 1116–1119 (2014).
[Crossref]

Wang, M.

Wang, S.

Wang, W.

Wang, X.

R. Su, P. Zhou, X. Wang, R. Tao, and X. Xu, “Kilowatt high average power narrow-linewidth nanosecond all-fiber laser,” High Power Laser Sci. Eng. 2, e3 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier,” High Power Laser Sci Eng 1(3-4), 123–125 (2013).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier,” High Power Laser Sci Eng 1(3-4), 123–125 (2013).
[Crossref]

Wang, Y.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Wen, L.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Wu, X.

Xia, C.

Xiao, H.

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier,” High Power Laser Sci Eng 1(3-4), 123–125 (2013).
[Crossref]

Xu, J.

Xu, Q.

Q. Xu, “Simulation on dispersion and birefringence properties of photonic crystal fiber,” Chin. Opt. Lett. 12(s1), S11302(2014).
[Crossref]

Xu, X.

R. Su, P. Zhou, X. Wang, R. Tao, and X. Xu, “Kilowatt high average power narrow-linewidth nanosecond all-fiber laser,” High Power Laser Sci. Eng. 2, e3 (2014).
[Crossref]

Xu, Y.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

Yang, C.

J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
[Crossref]

J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
[Crossref]

Yang, J.

Yang, X.

X. Yang, Y. Chen, C. Zhao, and H. Zhang, “Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser,” Chin. Opt. Lett. 12(3), 31405 (2014).
[Crossref]

Yu, C.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).

W. Li, Q. Zhou, L. Zhang, S. Wang, M. Wang, C. Yu, S. Feng, D. Chen, and L. Hu, “Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method,” Chin. Opt. Lett. 11(9), 091601 (2013).
[Crossref]

G. Zhang, Q. Zhou, C. Yu, L. Hu, and D. Chen, “Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding,” Opt. Lett. 37(12), 2259–2261 (2012).
[Crossref] [PubMed]

Yu, C. L.

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Yu, Z.

Zhang, G.

Zhang, H.

X. Yang, Y. Chen, C. Zhao, and H. Zhang, “Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser,” Chin. Opt. Lett. 12(3), 31405 (2014).
[Crossref]

Zhang, J.

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7-μm laser material,” Chin. Opt. Lett. 11(12), 121601 (2013).
[Crossref]

Zhang, L.

Zhao, C.

X. Yang, Y. Chen, C. Zhao, and H. Zhang, “Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser,” Chin. Opt. Lett. 12(3), 31405 (2014).
[Crossref]

Zhao, H.

Zhao, J.

J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
[Crossref]

J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
[Crossref]

Zhong, Z.

J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
[Crossref]

J. Hou, J. Zhao, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Engineering ultra-flattened-dispersion photonic crystal fibers with uniform holes by rotations of inner rings,” Photon. Res. 2(2), 59–63 (2014).
[Crossref]

Zhou, G.

Zhou, P.

R. Su, P. Zhou, X. Wang, R. Tao, and X. Xu, “Kilowatt high average power narrow-linewidth nanosecond all-fiber laser,” High Power Laser Sci. Eng. 2, e3 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier,” High Power Laser Sci Eng 1(3-4), 123–125 (2013).
[Crossref]

Zhou, Q.

Zhu, C.

Appl. Phys. B (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008).
[Crossref]

Appl. Phys. Lett. (2)

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[Crossref]

L. Wang, H. Liu, D. B. He, C. L. Yu, L. L. Hu, J. R. Qiu, and D. P. Chen, “Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power,” Appl. Phys. Lett. 104(13), 131111 (2014).
[Crossref]

Chin. Opt. Lett. (12)

X. Yang, Y. Chen, C. Zhao, and H. Zhang, “Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser,” Chin. Opt. Lett. 12(3), 31405 (2014).
[Crossref]

J. Zhao, J. Hou, C. Yang, Z. Zhong, Y. Gao, and S. Chen, “Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring,” Chin. Opt. Lett. 12(s1), S10607(2014).
[Crossref]

Q. Xu, “Simulation on dispersion and birefringence properties of photonic crystal fiber,” Chin. Opt. Lett. 12(s1), S11302(2014).
[Crossref]

N. Kasim, A. H. H. Al-Masoodi, F. Ahmad, Y. Munajat, H. Ahmad, and S. W. Harun, “Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber,” Chin. Opt. Lett. 12, 31403 (2014).
[Crossref]

C. Wang, G. Zhou, Y. Han, W. Wang, C. Xia, and L. Hou, “Spectral evolution of NIR luminescence in a Yb3+-doped photonic crystal fiber prepared bynon-chemical vapor deposition,” Chin. Opt. Lett. 11(6), 061601 (2013).
[Crossref]

S. J. Tan, S. W. Harun, H. Arof, and H. Ahmad, “Switchable Q-switched and mode-locked erbium-doped fiber laser operating in the L-band region,” Chin. Opt. Lett. 11(7), 073201 (2013).
[Crossref]

W. Li, Q. Zhou, L. Zhang, S. Wang, M. Wang, C. Yu, S. Feng, D. Chen, and L. Hu, “Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method,” Chin. Opt. Lett. 11(9), 091601 (2013).
[Crossref]

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7-μm laser material,” Chin. Opt. Lett. 11(12), 121601 (2013).
[Crossref]

L. Han, L. Liu, Z. Yu, H. Zhao, X. Song, J. Mu, X. Wu, J. Long, and X. Liu, “Dispersion compensation properties of dual-concentric core photonic crystal fibers,” Chin. Opt. Lett. 12(1), 010603 (2014).
[Crossref]

K. K. Qureshi, “Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter,” Chin. Opt. Lett. 12(2), 020605 (2014).
[Crossref]

A. Sulaiman, S. W. Harun, and H. Ahmad, “Ring microfiber coupler erbium-doped fiber laser analysis,” Chin. Opt. Lett. 12(2), 021403 (2014).
[Crossref]

C. Huang, D. Chen, H. Cai, R. Qu, and W. Chen, “Transmission characteristics of photonic crystal fiber gas cell used in frequency stabilized laser,” Chin. Opt. Lett. 12(8), 080602 (2014).
[Crossref]

High Power Laser Sci Eng (1)

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier,” High Power Laser Sci Eng 1(3-4), 123–125 (2013).
[Crossref]

High Power Laser Sci. Eng. (4)

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, and Z. Jiang, “Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility,” High Power Laser Sci. Eng. 2, e1 (2014).
[Crossref]

R. Su, P. Zhou, X. Wang, R. Tao, and X. Xu, “Kilowatt high average power narrow-linewidth nanosecond all-fiber laser,” High Power Laser Sci. Eng. 2, e3 (2014).
[Crossref]

A. Lucianetti, M. Sawicka, O. Slezak, M. Divoky, J. Pilar, V. Jambunathan, S. Bonora, R. Antipenkov, and T. Mocek, “Design of a kJ-class HiLASE laser as a driver for inertial fusion energy,” High Power Laser Sci. Eng. 2, e13 (2014).
[Crossref]

IEEE J Sel. Top. Quantum Electron. (1)

D. Jain, C. Baskiotis, T. C. May-Smith, K. Jaesun, and J. K. Sahu, “Large mode area multi-trench fiber with delocalization of higher order modes,” IEEE J Sel. Top. Quantum Electron. 20(5), 242–250 (2014).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Photon. Res. (2)

Sci. Rep. (2)

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2014).

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Absorption and emission cross-section spectra of the Yb3+-doped phosphate glass.
Fig. 2
Fig. 2 Decay curve of the Yb-doped phosphate glass.
Fig. 3
Fig. 3 The microscopic image of the AS-PCF.
Fig. 4
Fig. 4 Measured laser output power plotted against the absorbed pump power.
Fig. 5
Fig. 5 Spectrum of the fiber laser.
Fig. 6
Fig. 6 Measured beam quality factors of the AS-PCF. Inset: beam in the far field.

Metrics