Abstract

The PbS Quantum Dots (QDs)-doped silica optical fiber is fabricated using atomic layer deposition (ALD) technique in combination with modified chemical vapor deposition (MCVD) technology. PbS materials are introduced into the fiber core and then formed to QDs in the optical fiber materials during the preparation process. Its structure features and optical properties are investigated. The element distribution and stoichiometry of the core materials are revealed by μ-X-ray absorption near edge structure (μ-XANES), μ-X-ray fluorescent (μ-XRF) and energy dispersive spectrometer (EDS) analysis. The experiment results indicate that PbS QDs are distributed at the region between core and cladding layers with the concentration about 0.11 mol%. High resolution transmission electron microscopy (HRTEM) further reveals the dispersion of PbS QDs is uniform and its nanocrystalline size is about 2-6 nm. This is basically in agreement with the evolution results with effective-mass method. Additionally, PbS QDs-doped optical fiber pumped with 980 nm exhibits photoluminescence property in the 1050-1350 nm range. The special doping fibers will show application potential in optical fiber amplifiers, fiber lasers and optical sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber amplifiers based on PbS/CdS QDs modified by polymers

Xiaolan Sun, Libin Xie, Wei Zhou, Fufei Pang, Tingyun Wang, Alan R. Kost, and Zesheng An
Opt. Express 21(7) 8214-8219 (2013)

Ytterbium-doped fibers fabricated with atomic layer deposition method

Joan J. Montiel i Ponsoda, Lars Norin, Changgeng Ye, Markus Bosund, Mikko J. Söderlund, Ari Tervonen, and Seppo Honkanen
Opt. Express 20(22) 25085-25095 (2012)

Radiation-induced photoluminescence enhancement of Bi/Al-codoped silica optical fibers via atomic layer deposition

Jianxiang Wen, Wenjun Liu, Yanhua Dong, Yanhua Luo, Gang-ding Peng, Na Chen, Fufei Pang, Zhenyi Chen, and Tingyun Wang
Opt. Express 23(22) 29004-29013 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector soliton bunching in thulium-holmium fiber laser mode-locked with PbS quantum-dot-doped glass absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
    [Crossref]
  2. L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
    [Crossref]
  3. X. L. Sun, R. Dai, J. J. Chen, W. Zhou, T. Y. Wang, A. R. Kost, C. K. Tsung, and Z. S. An, “Enhanced thermal stability of oleic-acid-capped PbS quantum dot optical fiber amplifier,” Opt. Express 22(1), 519–524 (2014).
    [Crossref] [PubMed]
  4. F. F. Pang, X. L. Sun, H. R. Guo, J. W. Yan, J. Wang, X. L. Zeng, Z. Y. Chen, and T. Y. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18(13), 14024–14030 (2010).
    [Crossref] [PubMed]
  5. J. X. Wen, P. P. Wang, Y. H. Dong, F. F. Pang, X. L. Zeng, Z. Y. Chen, and T. Y. Wang, “Fabrication and photoluminescence property of the PbS-doped silica optical fiber,” in Conference on Lasers and Electro-Optics (CLEO): Applications and Technology, San Jose, California, (Optical Society of American, 2013), paper JTu4A.15.
    [Crossref]
  6. I. Moreels, D. Kruschke, P. Glas, and J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express 2(5), 496–500 (2012).
    [Crossref]
  7. A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
    [Crossref]
  8. G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
    [Crossref]
  9. C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
    [Crossref]
  10. K. C. Preetha and T. L. Remadevi, “The effect of introducing Al ions in cationic deposition bath on as-prepared PbS thin film through SILAR deposition method,” Mater. Sci. Semicond. Process. 24, 179–186 (2014).
    [Crossref]
  11. A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
    [Crossref]
  12. S. Novak, L. Scarpantonio, J. Novak, M. Dai Prè, A. Martucci, J. D. Musgraves, N. D. McClenaghan, and K. Richardson, “Incorporation of luminescent CdSe/ZnS core-shell quantum dots and PbS quantum dots into solution-derived chalcogenide glass films,” Opt. Mater. Express 3(6), 729–738 (2013).
  13. M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
    [Crossref]
  14. L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic layer deposition as a new method for rare-earth doping of optical fibers,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland, (Optical Society of American, 2007), paper CTuBB5.
    [Crossref]
  15. J. J. Montiel i Ponsoda, L. Norin, C. G. Ye, M. Bosund, M. J. Söderlund, A. Tervonen, and S. Honkanen, “Ytterbium-doped fibers fabricated with atomic layer deposition method,” Opt. Express 20(22), 25085–25095 (2012).
    [Crossref] [PubMed]
  16. I.-S. Chen, J. F. Roeder, T. E. Glassman, and T. H. Baum, “Liquid delivery MOCVD of niobium-doped Pb(Zr, Ti)O3 using a novel niobium precursor,” Chem. Mater. 11(2), 209–212 (1999).
    [Crossref]
  17. M. A. Malik, P. O’Brien, M. Motevalli, A. C. Jones, and T. Leedham, “X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films,” Polyhedron 18(11), 1641–1646 (1999).
    [Crossref]
  18. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [Crossref] [PubMed]
  19. F. Z. Tang, P. McNamara, G. W. Barton, and S. P. Ringer, “Nanoscale characterization of silica soots and aluminum solution doping in optical fiber fabrication,” J. Non-Cryst. Solids 352(36–37), 3799–3807 (2006).
    [Crossref]
  20. K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
    [Crossref] [PubMed]
  21. M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
    [Crossref]
  22. M. E. Fleet and S. Muthupari, “Coordination of boron in alkali borosilicate glasses using XANES,” J. Non-Cryst. Solids 255(2–3), 233–241 (1999).
    [Crossref]
  23. D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
    [Crossref]
  24. J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B Condens. Matter 48(4), 2819–2822 (1993).
    [Crossref] [PubMed]
  25. P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
    [Crossref]
  26. Y. Yang, W. Rodríguez-Córdoba, and T. Q. Lian, “Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions,” J. Am. Chem. Soc. 133(24), 9246–9249 (2011).
    [Crossref] [PubMed]
  27. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
    [Crossref]
  28. I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632–1646 (1997).
    [Crossref]

2014 (5)

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

X. L. Sun, R. Dai, J. J. Chen, W. Zhou, T. Y. Wang, A. R. Kost, C. K. Tsung, and Z. S. An, “Enhanced thermal stability of oleic-acid-capped PbS quantum dot optical fiber amplifier,” Opt. Express 22(1), 519–524 (2014).
[Crossref] [PubMed]

K. C. Preetha and T. L. Remadevi, “The effect of introducing Al ions in cationic deposition bath on as-prepared PbS thin film through SILAR deposition method,” Mater. Sci. Semicond. Process. 24, 179–186 (2014).
[Crossref]

A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
[Crossref]

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

2013 (3)

S. Novak, L. Scarpantonio, J. Novak, M. Dai Prè, A. Martucci, J. D. Musgraves, N. D. McClenaghan, and K. Richardson, “Incorporation of luminescent CdSe/ZnS core-shell quantum dots and PbS quantum dots into solution-derived chalcogenide glass films,” Opt. Mater. Express 3(6), 729–738 (2013).

P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
[Crossref]

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

2012 (3)

2011 (2)

Y. Yang, W. Rodríguez-Córdoba, and T. Q. Lian, “Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions,” J. Am. Chem. Soc. 133(24), 9246–9249 (2011).
[Crossref] [PubMed]

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

2010 (1)

2009 (1)

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

2008 (1)

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

2006 (2)

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[Crossref] [PubMed]

F. Z. Tang, P. McNamara, G. W. Barton, and S. P. Ringer, “Nanoscale characterization of silica soots and aluminum solution doping in optical fiber fabrication,” J. Non-Cryst. Solids 352(36–37), 3799–3807 (2006).
[Crossref]

2005 (1)

M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
[Crossref]

1999 (3)

M. E. Fleet and S. Muthupari, “Coordination of boron in alkali borosilicate glasses using XANES,” J. Non-Cryst. Solids 255(2–3), 233–241 (1999).
[Crossref]

I.-S. Chen, J. F. Roeder, T. E. Glassman, and T. H. Baum, “Liquid delivery MOCVD of niobium-doped Pb(Zr, Ti)O3 using a novel niobium precursor,” Chem. Mater. 11(2), 209–212 (1999).
[Crossref]

M. A. Malik, P. O’Brien, M. Motevalli, A. C. Jones, and T. Leedham, “X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films,” Polyhedron 18(11), 1641–1646 (1999).
[Crossref]

1997 (1)

1993 (1)

J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B Condens. Matter 48(4), 2819–2822 (1993).
[Crossref] [PubMed]

1990 (1)

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

1987 (1)

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Akers, W. G.

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

Ambrosio Lázaro, R. C.

A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
[Crossref]

An, Z. S.

Andreakou, P.

P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
[Crossref]

Artemyev, M. V.

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Baranov, A. V.

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Barton, G. W.

F. Z. Tang, P. McNamara, G. W. Barton, and S. P. Ringer, “Nanoscale characterization of silica soots and aluminum solution doping in optical fiber fabrication,” J. Non-Cryst. Solids 352(36–37), 3799–3807 (2006).
[Crossref]

Baum, T. H.

I.-S. Chen, J. F. Roeder, T. E. Glassman, and T. H. Baum, “Liquid delivery MOCVD of niobium-doped Pb(Zr, Ti)O3 using a novel niobium precursor,” Chem. Mater. 11(2), 209–212 (1999).
[Crossref]

Bernechea, M.

P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
[Crossref]

Bosund, M.

Brossard, M.

P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
[Crossref]

Cao, F. R.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Cao, J.

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

Carrillo-Castillo, A.

A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
[Crossref]

Chen, I.-S.

I.-S. Chen, J. F. Roeder, T. E. Glassman, and T. H. Baum, “Liquid delivery MOCVD of niobium-doped Pb(Zr, Ti)O3 using a novel niobium precursor,” Chem. Mater. 11(2), 209–212 (1999).
[Crossref]

Chen, J. J.

Chen, Z. Y.

Cheng, Y. B.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Dai, R.

Dai Prè, M.

de la Cruz Terrazas, E. C.

A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
[Crossref]

Deng, D. W.

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

Dong, D. D.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Dong, G. P.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Fan, S. H.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Fedorov, A. V.

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Fleet, M. E.

M. E. Fleet and S. Muthupari, “Coordination of boron in alkali borosilicate glasses using XANES,” J. Non-Cryst. Solids 255(2–3), 233–241 (1999).
[Crossref]

Funasaka, K.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Gao, L.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Gaponenko, M. S.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector soliton bunching in thulium-holmium fiber laser mode-locked with PbS quantum-dot-doped glass absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Glas, P.

Glassman, T. E.

I.-S. Chen, J. F. Roeder, T. E. Glassman, and T. H. Baum, “Liquid delivery MOCVD of niobium-doped Pb(Zr, Ti)O3 using a novel niobium precursor,” Chem. Mater. 11(2), 209–212 (1999).
[Crossref]

Golubkov, V. V.

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Gu, Y. Q.

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

Gu, Z. Z.

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

Gumenyuk, R.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector soliton bunching in thulium-holmium fiber laser mode-locked with PbS quantum-dot-doped glass absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Guo, H. R.

He, J. G.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Heo, J.

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

Hoffman, H. J.

Honkanen, S.

Jimenez-Pérez, A.

A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
[Crossref]

Jones, A. C.

M. A. Malik, P. O’Brien, M. Motevalli, A. C. Jones, and T. Leedham, “X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films,” Polyhedron 18(11), 1641–1646 (1999).
[Crossref]

Kamiura, T.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Kang, I.

Kasowski, R.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Katahira, K.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Konstantatos, G.

P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
[Crossref]

Koponen, J. J.

Kost, A. R.

Kruschke, D.

Kwon, Y. K.

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

Lagoudakis, P. G.

P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
[Crossref]

Leedham, T.

M. A. Malik, P. O’Brien, M. Motevalli, A. C. Jones, and T. Leedham, “X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films,” Polyhedron 18(11), 1641–1646 (1999).
[Crossref]

Leskelä, M.

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

Li, C. Y.

P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
[Crossref]

Li, M.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Lian, T. Q.

Y. Yang, W. Rodríguez-Córdoba, and T. Q. Lian, “Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions,” J. Am. Chem. Soc. 133(24), 9246–9249 (2011).
[Crossref] [PubMed]

Litvin, A. P.

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Liu, C.

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

Liu, H.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Ma, Z. J.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Machol, J. L.

J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B Condens. Matter 48(4), 2819–2822 (1993).
[Crossref] [PubMed]

Mahler, W.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Malik, M. A.

M. A. Malik, P. O’Brien, M. Motevalli, A. C. Jones, and T. Leedham, “X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films,” Polyhedron 18(11), 1641–1646 (1999).
[Crossref]

Martínez Pérez, C. A.

A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
[Crossref]

Martucci, A.

McClenaghan, N. D.

McNamara, P.

F. Z. Tang, P. McNamara, G. W. Barton, and S. P. Ringer, “Nanoscale characterization of silica soots and aluminum solution doping in optical fiber fabrication,” J. Non-Cryst. Solids 352(36–37), 3799–3807 (2006).
[Crossref]

Miyazaki, T.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Montiel i Ponsoda, J. J.

Moreels, I.

Moriwaki, H.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Motevalli, M.

M. A. Malik, P. O’Brien, M. Motevalli, A. C. Jones, and T. Leedham, “X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films,” Polyhedron 18(11), 1641–1646 (1999).
[Crossref]

Musgraves, J. D.

Muthupari, S.

M. E. Fleet and S. Muthupari, “Coordination of boron in alkali borosilicate glasses using XANES,” J. Non-Cryst. Solids 255(2–3), 233–241 (1999).
[Crossref]

Niemela, P.

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

Niinistö, L.

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

Norin, L.

Novak, J.

Novak, S.

Nykänen, E.

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

O’Brien, P.

M. A. Malik, P. O’Brien, M. Motevalli, A. C. Jones, and T. Leedham, “X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films,” Polyhedron 18(11), 1641–1646 (1999).
[Crossref]

Okhotnikov, O. G.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector soliton bunching in thulium-holmium fiber laser mode-locked with PbS quantum-dot-doped glass absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Onushchenko, A. A.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector soliton bunching in thulium-holmium fiber laser mode-locked with PbS quantum-dot-doped glass absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Oshita, K.

M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
[Crossref]

Pang, F. F.

Parfenov, P. S.

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Patel, R. C.

J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B Condens. Matter 48(4), 2819–2822 (1993).
[Crossref] [PubMed]

Peng, M. Y.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Preetha, K. C.

K. C. Preetha and T. L. Remadevi, “The effect of introducing Al ions in cationic deposition bath on as-prepared PbS thin film through SILAR deposition method,” Mater. Sci. Semicond. Process. 24, 179–186 (2014).
[Crossref]

Prudnikau, A. V.

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Qian, Z. Y.

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

Qiao, K. K.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Qiu, J. R.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Quevedo-López, M. A.

A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
[Crossref]

Remadevi, T. L.

K. C. Preetha and T. L. Remadevi, “The effect of introducing Al ions in cationic deposition bath on as-prepared PbS thin film through SILAR deposition method,” Mater. Sci. Semicond. Process. 24, 179–186 (2014).
[Crossref]

Richardson, K.

Ringer, S. P.

F. Z. Tang, P. McNamara, G. W. Barton, and S. P. Ringer, “Nanoscale characterization of silica soots and aluminum solution doping in optical fiber fabrication,” J. Non-Cryst. Solids 352(36–37), 3799–3807 (2006).
[Crossref]

Rodríguez-Córdoba, W.

Y. Yang, W. Rodríguez-Córdoba, and T. Q. Lian, “Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions,” J. Am. Chem. Soc. 133(24), 9246–9249 (2011).
[Crossref] [PubMed]

Roeder, J. F.

I.-S. Chen, J. F. Roeder, T. E. Glassman, and T. H. Baum, “Liquid delivery MOCVD of niobium-doped Pb(Zr, Ti)O3 using a novel niobium precursor,” Chem. Mater. 11(2), 209–212 (1999).
[Crossref]

Scarpantonio, L.

Shinya, M.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Söderlund, M. J.

Soininen, P.

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

Song, H. S.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Sun, X. L.

Suna, A.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Takaoka, M.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
[Crossref]

Takeda, N.

M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
[Crossref]

Tammela, S. K. T.

Tanaka, T.

M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
[Crossref]

Tang, F. Z.

F. Z. Tang, P. McNamara, G. W. Barton, and S. P. Ringer, “Nanoscale characterization of silica soots and aluminum solution doping in optical fiber fabrication,” J. Non-Cryst. Solids 352(36–37), 3799–3807 (2006).
[Crossref]

Tang, J.

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

Tanida, H.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Tanner, D. B.

J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B Condens. Matter 48(4), 2819–2822 (1993).
[Crossref] [PubMed]

Tervonen, A.

Tiitta, M.

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

Tojo, T.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Tomm, J. W.

Tsung, C. K.

Uruga, T.

M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
[Crossref]

Ushakova, E. V.

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Vähäkangas, J.

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

Wang, J.

Wang, T. Y.

Wang, Y.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Wise, F. W.

I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632–1646 (1997).
[Crossref]

J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B Condens. Matter 48(4), 2819–2822 (1993).
[Crossref] [PubMed]

Wu, B. T.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Wu, G. B.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Xia, J. F.

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

Yamamoto, O.

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Yamamoto, T.

M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
[Crossref]

Yan, J. W.

Yang, Y.

Y. Yang, W. Rodríguez-Córdoba, and T. Q. Lian, “Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions,” J. Am. Chem. Soc. 133(24), 9246–9249 (2011).
[Crossref] [PubMed]

Ye, C. G.

Yumashev, K. V.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector soliton bunching in thulium-holmium fiber laser mode-locked with PbS quantum-dot-doped glass absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Zeng, X. L.

Zhang, F. T.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Zhang, Y. H.

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

Zhou, W.

Appl. Phys. Lett. (2)

L. Gao, D. D. Dong, J. G. He, K. K. Qiao, F. R. Cao, M. Li, H. Liu, Y. B. Cheng, J. Tang, and H. S. Song, “Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film,” Appl. Phys. Lett. 105(15), 153702 (2014).
[Crossref]

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

Chem. Mater. (1)

I.-S. Chen, J. F. Roeder, T. E. Glassman, and T. H. Baum, “Liquid delivery MOCVD of niobium-doped Pb(Zr, Ti)O3 using a novel niobium precursor,” Chem. Mater. 11(2), 209–212 (1999).
[Crossref]

Eur. J. Inorg. Chem. (1)

D. W. Deng, J. Cao, J. F. Xia, Z. Y. Qian, Y. Q. Gu, Z. Z. Gu, and W. G. Akers, “Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by using various water-soluble anion precursors,” Eur. J. Inorg. Chem. 2011(15), 2422–2432 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector soliton bunching in thulium-holmium fiber laser mode-locked with PbS quantum-dot-doped glass absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Yang, W. Rodríguez-Córdoba, and T. Q. Lian, “Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions,” J. Am. Chem. Soc. 133(24), 9246–9249 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

J. Non-Cryst. Solids (3)

F. Z. Tang, P. McNamara, G. W. Barton, and S. P. Ringer, “Nanoscale characterization of silica soots and aluminum solution doping in optical fiber fabrication,” J. Non-Cryst. Solids 352(36–37), 3799–3807 (2006).
[Crossref]

M. E. Fleet and S. Muthupari, “Coordination of boron in alkali borosilicate glasses using XANES,” J. Non-Cryst. Solids 255(2–3), 233–241 (1999).
[Crossref]

G. P. Dong, G. B. Wu, S. H. Fan, F. T. Zhang, Y. H. Zhang, B. T. Wu, Z. J. Ma, M. Y. Peng, and J. R. Qiu, “Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses,” J. Non-Cryst. Solids 383, 192–195 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

P. Andreakou, M. Brossard, C. Y. Li, M. Bernechea, G. Konstantatos, and P. G. Lagoudakis, “Size- and temperature-dependent carrier dynamics in oleic acid capped PbS quantum dots,” J. Phys. Chem. C 117(4), 1887–1892 (2013).
[Crossref]

A. P. Litvin, P. S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, and A. V. Baranov, “PbS Quantum Dots in a Porous Matrix: Optical Characterization,” J. Phys. Chem. C 117(23), 12318–12324 (2013).
[Crossref]

Mater. Lett. (1)

A. Carrillo-Castillo, R. C. Ambrosio Lázaro, A. Jimenez-Pérez, C. A. Martínez Pérez, E. C. de la Cruz Terrazas, and M. A. Quevedo-López, “Role of complexing agents in chemical bath deposition of lead sulfide thin films,” Mater. Lett. 121, 19–21 (2014).
[Crossref]

Mater. Sci. Semicond. Process. (1)

K. C. Preetha and T. L. Remadevi, “The effect of introducing Al ions in cationic deposition bath on as-prepared PbS thin film through SILAR deposition method,” Mater. Sci. Semicond. Process. 24, 179–186 (2014).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter (1)

J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “Vibronic quantum beats in PbS microcrystallites,” Phys. Rev. B Condens. Matter 48(4), 2819–2822 (1993).
[Crossref] [PubMed]

Phys. Scr. T (1)

M. Takaoka, T. Yamamoto, T. Tanaka, N. Takeda, K. Oshita, and T. Uruga, “Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy,” Phys. Scr. T 115, 943–945 (2005).
[Crossref]

Polyhedron (1)

M. A. Malik, P. O’Brien, M. Motevalli, A. C. Jones, and T. Leedham, “X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films,” Polyhedron 18(11), 1641–1646 (1999).
[Crossref]

Sci. Total Environ. (1)

K. Funasaka, T. Tojo, K. Katahira, M. Shinya, T. Miyazaki, T. Kamiura, O. Yamamoto, H. Moriwaki, H. Tanida, and M. Takaoka, “Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction,” Sci. Total Environ. 403(1-3), 230–234 (2008).
[Crossref] [PubMed]

Vacuum (1)

M. Leskelä, L. Niinistö, P. Niemela, E. Nykänen, P. Soininen, M. Tiitta, and J. Vähäkangas, “Preparation of lead sulfide thin films by the atomic layer epitaxy process,” Vacuum 41(4–6), 1457–1459 (1990).
[Crossref]

Other (2)

L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic layer deposition as a new method for rare-earth doping of optical fibers,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland, (Optical Society of American, 2007), paper CTuBB5.
[Crossref]

J. X. Wen, P. P. Wang, Y. H. Dong, F. F. Pang, X. L. Zeng, Z. Y. Chen, and T. Y. Wang, “Fabrication and photoluminescence property of the PbS-doped silica optical fiber,” in Conference on Lasers and Electro-Optics (CLEO): Applications and Technology, San Jose, California, (Optical Society of American, 2013), paper JTu4A.15.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 LIII XANES spectra of Pb-related materials (Reference data of PbS and PbO materials reported in [20, 21]), (inner) PbS-doped optical fiber preform and its cross-section.
Fig. 2
Fig. 2 μ-XRF spectra of Pb and Ge elements in the fiber core, (inner) cross-section of PbS-doped optical fiber preform.
Fig. 3
Fig. 3 The RID of PbS-doped silica optical fiber, (inner) cross-section of the optical fiber.
Fig. 4
Fig. 4 Procedure of FIB machining: (a) metal spraying on cross-section, (inner) the pre-coated platinum on the core of fiber; (b) slicing process; (c) sample separates from the fiber; (d) ion beam thinning process.
Fig. 5
Fig. 5 TEM images of optical fiber core with PbS-doped materials: (a) LRTEM; (b) HRTEM lattice image, (inner) SAED.
Fig. 6
Fig. 6 Optical properties of PbS-QDs doped silica optical fiber: (a) absorption spectrum; (b) PL spectrum.

Tables (1)

Tables Icon

Table 1 The content of different elements in the fiber core

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E g ( R )=ω (αω) 2
( E g ( R ) ) 2 = E g 2 +( 2 2 E g m ) ( π R ) 2

Metrics