Abstract

Titania- and silica-polymer hybrid materials were prepared with an in situ sol-gel process for refractive index-matched, optical thin-film applications. A random copolymer of methyl methacrylate (MMA) and 3-(trimethoxysilyl) propyl methacrylate (MSMA) (poly(MMA-co-MSMA), MMA:MSMA = 78:22 molar ratio) capped with trialkoxysilane in MSMA units was used as a precursor. The precursor was further reacted with titanium (IV) isopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) to synthesize the high (H) and low (L) refractive index hybrid materials, respectively, with an acid-free sol-gel method, which prevents the corrosion of neighboring metals or metal oxides used in optical thin-film applications. The refractive indices of the H and L materials were controlled by the concentrations of TTIP and NaCl used during the acid-free sol-gel process, respectively. The H material on a glass substrate exhibited a high optical transparency of 96%, with respect to bare glass at 550 nm, and a high refractive index of 1.82 when the precursor was reacted with TTIP (90 wt% of the precursor). The L material on a glass substrate showed a high optical transparency of ~100%, with respect to bare glass at 550 nm, and a low refractive index of 1.44 when the precursor was reacted with 2.5 M of NaCl. An indium tin oxide (ITO)/L/H/poly(ethylene terephthalate) thin-film substrate, with the optimum thicknesses of each layer calculated with Macleod software, had a reflexibility difference (ΔR) of < 1% over 65% of the visible spectrum, as well as good flexibility and a long lifetime. These results indicate that the spin-coatable L and H materials could replace the typical low and high refractive index inorganic materials (SiO2 and Nb2O5, respectively) used for flexible touch screen applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR

Brian A. Rose, Ashley J. Maker, and Andrea M. Armani
Opt. Mater. Express 2(5) 671-681 (2012)

Durable solgel antireflective films with high laser-induced damage thresholds for inertial confinement fusion

Yao Xu, Lei Zhang, Dong Wu, Yu Han Sun, Zu Xing Huang, Xiao Dong Jiang, Xiao Feng Wei, Zhi Hong Li, Bao Zhong Dong, and Zhong Hua Wu
J. Opt. Soc. Am. B 22(4) 905-912 (2005)

Photo-patternable GeO2-contained organic-inorganic hybrid sol-gel films for photonic applications

Wenxiu Que, C. Y. Jia, M. Sun, Z. Sun, L. L. Wang, and Z. J. Zhang
Opt. Express 16(6) 3490-3495 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Z. Knittl, Optics of Thin Film (John Wiley, 1981).
  2. H. A. Macleod, Thin-film Optical Filters (Institute of Physics Publishing, 2003).
  3. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  4. J. Sancho-Parramon and V. Janicke, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5-SiO2 mixtures,” J. Phys. D Appl. Phys. 41(21), 215304 (2008).
    [Crossref]
  5. H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites,” J. Sol-Gel Sci. Technol. 19(1), 39–51 (2000).
    [Crossref]
  6. L. H. Lee and W. C. Chen, “High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)-Titania Materials,” Chem. Mater. 13(3), 1137–1142 (2001).
    [Crossref]
  7. P. J. Flory, Principle of Polymer Chemistry (Cornell University Press, 1953).
  8. G. Schottner, “Hybrid Sol-Gel Derived Polymer: Applications of Multifunctional Materials,” Chem. Mater. 13(10), 3422–3435 (2001).
    [Crossref]
  9. C. B. Breslin, A. M. Fenelon, and K. G. Conroy, “Surface engineering: corrosion protection using conducting polymers,” Mater. Des. 26(3), 233–237 (2005).
    [Crossref]
  10. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, 1990).
  11. J. Livage and C. Sanchez, “Sol-gel chemistry,” proceedings of the Third International Symposium on Aerogels, J. Non-Cryst. Solids 145, 11–19 (1992).
    [Crossref]
  12. S. Y. Chen and S. Cheng, “Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol,” Chem. Mater. 19(12), 3041–3051 (2007).
    [Crossref]
  13. L. M. Smith and M. L. Coote, “Effect of temperature and solvent on polymer tacticity in the free-radical polymerization of styrene and methyl methacrylate,” J. Polym. Sci. Pol. Chem. 51(16), 3351–3358 (2013).
    [Crossref]
  14. C. Zhang, L. Li, H. Cong, and S. Zheng, “Poly(methyl methacrylate)-block-poly(N-vinyl pyrrolidone) diblock copolymer: A facile synthesis via sequential radical polymerization mediated by isopropylxanthic disulfide and its nanostructuring polybenzoxazine thermosets,” J. Polym. Sci. Pol. Chem. 52(7), 952–962 (2014).
    [Crossref]
  15. J. Du and Y. Chen, “Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate,” Macromolecules 37(17), 6322–6328 (2004).
    [Crossref]
  16. H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
    [Crossref] [PubMed]
  17. W. Tao, F. Fei, and W. Y. Chuan, “Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites,” Polym. Bull. 56(4), 413–426 (2006).
    [Crossref]
  18. Z. H. Huang and K. Y. Qiu, “Preparation and thermal property of poly(methyl methacrylate)/silicate hybrid materials by the in-situ sol-gel process,” Polym. Bull. 35(5), 607–613 (1995).
    [Crossref]
  19. R. Al-Oweini and H. El-Rassy, “Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R”Si(OR’)3 precursors,” J. Mol. Struct. 919(1-3), 140–145 (2009).
    [Crossref]
  20. J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, “Silica-Titania mixed Oxides: Si-O-Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties,” Catal. Lett. 124(3), 185–194 (2008).
    [Crossref]
  21. C. Chang and W. Chen, “Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films,” Chem. Mater. 14(10), 4242–4248 (2002).
    [Crossref]
  22. Y. Yu, C. Chen, and W. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica,” Polymer (Guildf.) 44(3), 593–601 (2003).
    [Crossref]
  23. H. B. Sunkara, J. M. Jethmelani, and W. T. Ford, “Composite of Colloidal Crystals of Silica in Poly(methyl methacrylate),” Chem. Mater. 6(4), 362–364 (1994).
    [Crossref]
  24. Y. Liu, C. Hsu, and K. Hsu, “Poly(methyl methacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles,” Polymer (Guildf.) 46(6), 1851–1856 (2005).
    [Crossref]
  25. Y. Hu, C. Chen, and C. Wang, “Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites,” Polym. Degrad. Stabil. 84(3), 545–553 (2004).
    [Crossref]
  26. E. Rubio, J. Almaral, R. Ramirez-Bon, V. Castano, and V. Rodriguez, “Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica),” Opt. Mater. 27(7), 1266–1269 (2005).
    [Crossref]
  27. C. S. Oh, S. M. Lee, E. H. Kim, E. W. Lee, and L. S. Park, “Electro-Optical Properties of Index Matched ITO-PET Film for Touch Panel Application,” Mol. Cryst. Liquid Cryst. 568(1), 32–37 (2012).
    [Crossref]
  28. W. Choi, “Touch Panel with Improved Pattern Visibility,” Korea Patent WO 2014027781 A1, February 20, 2014.
  29. S. H. Yue, Y. B. Jung, I. S. Kim, M. H. Lee, and J. Cho, “Capacitive Touch Panel with Improved Visibility,” Korea Patent WO 2013005979 A2, January 10, 2013.
  30. S. J. Park, 2012, “Improvement of Light Extraction Efficiency of OLED Utilizing High Refractive Index Organic Material and Optical Simulation”, a master’s thesis, Kyungpook National University Graduate School, Daegu.
  31. A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
    [Crossref]
  32. S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
    [Crossref]
  33. D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
    [Crossref] [PubMed]
  34. E. Kim, C. Yang, and J. Park, “The crystallinity and mechanical properties of indium tin oxide coatings on polymer substrates,” J. Appl. Phys. 109(4), 043511 (2011).
    [Crossref]
  35. J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
    [Crossref]

2014 (1)

C. Zhang, L. Li, H. Cong, and S. Zheng, “Poly(methyl methacrylate)-block-poly(N-vinyl pyrrolidone) diblock copolymer: A facile synthesis via sequential radical polymerization mediated by isopropylxanthic disulfide and its nanostructuring polybenzoxazine thermosets,” J. Polym. Sci. Pol. Chem. 52(7), 952–962 (2014).
[Crossref]

2013 (2)

L. M. Smith and M. L. Coote, “Effect of temperature and solvent on polymer tacticity in the free-radical polymerization of styrene and methyl methacrylate,” J. Polym. Sci. Pol. Chem. 51(16), 3351–3358 (2013).
[Crossref]

D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
[Crossref] [PubMed]

2012 (1)

C. S. Oh, S. M. Lee, E. H. Kim, E. W. Lee, and L. S. Park, “Electro-Optical Properties of Index Matched ITO-PET Film for Touch Panel Application,” Mol. Cryst. Liquid Cryst. 568(1), 32–37 (2012).
[Crossref]

2011 (2)

E. Kim, C. Yang, and J. Park, “The crystallinity and mechanical properties of indium tin oxide coatings on polymer substrates,” J. Appl. Phys. 109(4), 043511 (2011).
[Crossref]

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

2009 (1)

R. Al-Oweini and H. El-Rassy, “Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R”Si(OR’)3 precursors,” J. Mol. Struct. 919(1-3), 140–145 (2009).
[Crossref]

2008 (3)

J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, “Silica-Titania mixed Oxides: Si-O-Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties,” Catal. Lett. 124(3), 185–194 (2008).
[Crossref]

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

J. Sancho-Parramon and V. Janicke, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5-SiO2 mixtures,” J. Phys. D Appl. Phys. 41(21), 215304 (2008).
[Crossref]

2007 (3)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

S. Y. Chen and S. Cheng, “Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol,” Chem. Mater. 19(12), 3041–3051 (2007).
[Crossref]

A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
[Crossref]

2006 (1)

W. Tao, F. Fei, and W. Y. Chuan, “Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites,” Polym. Bull. 56(4), 413–426 (2006).
[Crossref]

2005 (4)

C. B. Breslin, A. M. Fenelon, and K. G. Conroy, “Surface engineering: corrosion protection using conducting polymers,” Mater. Des. 26(3), 233–237 (2005).
[Crossref]

J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
[Crossref]

E. Rubio, J. Almaral, R. Ramirez-Bon, V. Castano, and V. Rodriguez, “Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica),” Opt. Mater. 27(7), 1266–1269 (2005).
[Crossref]

Y. Liu, C. Hsu, and K. Hsu, “Poly(methyl methacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles,” Polymer (Guildf.) 46(6), 1851–1856 (2005).
[Crossref]

2004 (2)

Y. Hu, C. Chen, and C. Wang, “Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites,” Polym. Degrad. Stabil. 84(3), 545–553 (2004).
[Crossref]

J. Du and Y. Chen, “Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate,” Macromolecules 37(17), 6322–6328 (2004).
[Crossref]

2003 (1)

Y. Yu, C. Chen, and W. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica,” Polymer (Guildf.) 44(3), 593–601 (2003).
[Crossref]

2002 (1)

C. Chang and W. Chen, “Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films,” Chem. Mater. 14(10), 4242–4248 (2002).
[Crossref]

2001 (2)

L. H. Lee and W. C. Chen, “High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)-Titania Materials,” Chem. Mater. 13(3), 1137–1142 (2001).
[Crossref]

G. Schottner, “Hybrid Sol-Gel Derived Polymer: Applications of Multifunctional Materials,” Chem. Mater. 13(10), 3422–3435 (2001).
[Crossref]

2000 (1)

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites,” J. Sol-Gel Sci. Technol. 19(1), 39–51 (2000).
[Crossref]

1995 (1)

Z. H. Huang and K. Y. Qiu, “Preparation and thermal property of poly(methyl methacrylate)/silicate hybrid materials by the in-situ sol-gel process,” Polym. Bull. 35(5), 607–613 (1995).
[Crossref]

1994 (1)

H. B. Sunkara, J. M. Jethmelani, and W. T. Ford, “Composite of Colloidal Crystals of Silica in Poly(methyl methacrylate),” Chem. Mater. 6(4), 362–364 (1994).
[Crossref]

1992 (1)

J. Livage and C. Sanchez, “Sol-gel chemistry,” proceedings of the Third International Symposium on Aerogels, J. Non-Cryst. Solids 145, 11–19 (1992).
[Crossref]

Ahn, Y.

D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
[Crossref] [PubMed]

Almaral, J.

E. Rubio, J. Almaral, R. Ramirez-Bon, V. Castano, and V. Rodriguez, “Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica),” Opt. Mater. 27(7), 1266–1269 (2005).
[Crossref]

Al-Oweini, R.

R. Al-Oweini and H. El-Rassy, “Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R”Si(OR’)3 precursors,” J. Mol. Struct. 919(1-3), 140–145 (2009).
[Crossref]

Babu, S.

A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
[Crossref]

Breslin, C. B.

C. B. Breslin, A. M. Fenelon, and K. G. Conroy, “Surface engineering: corrosion protection using conducting polymers,” Mater. Des. 26(3), 233–237 (2005).
[Crossref]

Brinley, E.

A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
[Crossref]

Camacho-Bragado, A.

J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
[Crossref]

Castano, V.

E. Rubio, J. Almaral, R. Ramirez-Bon, V. Castano, and V. Rodriguez, “Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica),” Opt. Mater. 27(7), 1266–1269 (2005).
[Crossref]

Chang, C.

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

C. Chang and W. Chen, “Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films,” Chem. Mater. 14(10), 4242–4248 (2002).
[Crossref]

Chen, C.

Y. Hu, C. Chen, and C. Wang, “Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites,” Polym. Degrad. Stabil. 84(3), 545–553 (2004).
[Crossref]

Y. Yu, C. Chen, and W. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica,” Polymer (Guildf.) 44(3), 593–601 (2003).
[Crossref]

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chen, S. Y.

S. Y. Chen and S. Cheng, “Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol,” Chem. Mater. 19(12), 3041–3051 (2007).
[Crossref]

Chen, W.

Y. Yu, C. Chen, and W. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica,” Polymer (Guildf.) 44(3), 593–601 (2003).
[Crossref]

C. Chang and W. Chen, “Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films,” Chem. Mater. 14(10), 4242–4248 (2002).
[Crossref]

Chen, W. C.

L. H. Lee and W. C. Chen, “High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)-Titania Materials,” Chem. Mater. 13(3), 1137–1142 (2001).
[Crossref]

Chen, W. Q.

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

Chen, Y.

J. Du and Y. Chen, “Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate,” Macromolecules 37(17), 6322–6328 (2004).
[Crossref]

Cheng, C.

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

Cheng, S.

S. Y. Chen and S. Cheng, “Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol,” Chem. Mater. 19(12), 3041–3051 (2007).
[Crossref]

Cheng, S. X.

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

Chuan, W. Y.

W. Tao, F. Fei, and W. Y. Chuan, “Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites,” Polym. Bull. 56(4), 413–426 (2006).
[Crossref]

Cong, H.

C. Zhang, L. Li, H. Cong, and S. Zheng, “Poly(methyl methacrylate)-block-poly(N-vinyl pyrrolidone) diblock copolymer: A facile synthesis via sequential radical polymerization mediated by isopropylxanthic disulfide and its nanostructuring polybenzoxazine thermosets,” J. Polym. Sci. Pol. Chem. 52(7), 952–962 (2014).
[Crossref]

Conroy, K. G.

C. B. Breslin, A. M. Fenelon, and K. G. Conroy, “Surface engineering: corrosion protection using conducting polymers,” Mater. Des. 26(3), 233–237 (2005).
[Crossref]

Coote, M. L.

L. M. Smith and M. L. Coote, “Effect of temperature and solvent on polymer tacticity in the free-radical polymerization of styrene and methyl methacrylate,” J. Polym. Sci. Pol. Chem. 51(16), 3351–3358 (2013).
[Crossref]

Deshpande, S.

A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
[Crossref]

Du, J.

J. Du and Y. Chen, “Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate,” Macromolecules 37(17), 6322–6328 (2004).
[Crossref]

Elechiguerra, J. L.

J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
[Crossref]

El-Rassy, H.

R. Al-Oweini and H. El-Rassy, “Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R”Si(OR’)3 precursors,” J. Mol. Struct. 919(1-3), 140–145 (2009).
[Crossref]

Fei, F.

W. Tao, F. Fei, and W. Y. Chuan, “Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites,” Polym. Bull. 56(4), 413–426 (2006).
[Crossref]

Fenelon, A. M.

C. B. Breslin, A. M. Fenelon, and K. G. Conroy, “Surface engineering: corrosion protection using conducting polymers,” Mater. Des. 26(3), 233–237 (2005).
[Crossref]

Ford, W. T.

H. B. Sunkara, J. M. Jethmelani, and W. T. Ford, “Composite of Colloidal Crystals of Silica in Poly(methyl methacrylate),” Chem. Mater. 6(4), 362–364 (1994).
[Crossref]

Garcia-Gutierrez, D.

J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
[Crossref]

Goedicke, S.

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites,” J. Sol-Gel Sci. Technol. 19(1), 39–51 (2000).
[Crossref]

Hsu, C.

Y. Liu, C. Hsu, and K. Hsu, “Poly(methyl methacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles,” Polymer (Guildf.) 46(6), 1851–1856 (2005).
[Crossref]

Hsu, K.

Y. Liu, C. Hsu, and K. Hsu, “Poly(methyl methacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles,” Polymer (Guildf.) 46(6), 1851–1856 (2005).
[Crossref]

Hu, Y.

Y. Hu, C. Chen, and C. Wang, “Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites,” Polym. Degrad. Stabil. 84(3), 545–553 (2004).
[Crossref]

Huang, Z. H.

Z. H. Huang and K. Y. Qiu, “Preparation and thermal property of poly(methyl methacrylate)/silicate hybrid materials by the in-situ sol-gel process,” Polym. Bull. 35(5), 607–613 (1995).
[Crossref]

Janicke, V.

J. Sancho-Parramon and V. Janicke, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5-SiO2 mixtures,” J. Phys. D Appl. Phys. 41(21), 215304 (2008).
[Crossref]

Jeong, Y.

D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
[Crossref] [PubMed]

Jethmelani, J. M.

H. B. Sunkara, J. M. Jethmelani, and W. T. Ford, “Composite of Colloidal Crystals of Silica in Poly(methyl methacrylate),” Chem. Mater. 6(4), 362–364 (1994).
[Crossref]

Jonschker, G.

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites,” J. Sol-Gel Sci. Technol. 19(1), 39–51 (2000).
[Crossref]

Kang, I.

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

Karakoti, A.

A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
[Crossref]

Kim, E.

E. Kim, C. Yang, and J. Park, “The crystallinity and mechanical properties of indium tin oxide coatings on polymer substrates,” J. Appl. Phys. 109(4), 043511 (2011).
[Crossref]

Kim, E. H.

C. S. Oh, S. M. Lee, E. H. Kim, E. W. Lee, and L. S. Park, “Electro-Optical Properties of Index Matched ITO-PET Film for Touch Panel Application,” Mol. Cryst. Liquid Cryst. 568(1), 32–37 (2012).
[Crossref]

Kim, J. K.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kwak, G.

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

Larios-Lopez, L.

J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
[Crossref]

Lee, D.

D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
[Crossref] [PubMed]

Lee, D. Y.

D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
[Crossref] [PubMed]

Lee, E. J.

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

Lee, E. W.

C. S. Oh, S. M. Lee, E. H. Kim, E. W. Lee, and L. S. Park, “Electro-Optical Properties of Index Matched ITO-PET Film for Touch Panel Application,” Mol. Cryst. Liquid Cryst. 568(1), 32–37 (2012).
[Crossref]

Lee, H.

D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
[Crossref] [PubMed]

Lee, L. H.

L. H. Lee and W. C. Chen, “High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)-Titania Materials,” Chem. Mater. 13(3), 1137–1142 (2001).
[Crossref]

Lee, S. J.

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

Lee, S. M.

C. S. Oh, S. M. Lee, E. H. Kim, E. W. Lee, and L. S. Park, “Electro-Optical Properties of Index Matched ITO-PET Film for Touch Panel Application,” Mol. Cryst. Liquid Cryst. 568(1), 32–37 (2012).
[Crossref]

Lee, Y.

D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
[Crossref] [PubMed]

Li, L.

C. Zhang, L. Li, H. Cong, and S. Zheng, “Poly(methyl methacrylate)-block-poly(N-vinyl pyrrolidone) diblock copolymer: A facile synthesis via sequential radical polymerization mediated by isopropylxanthic disulfide and its nanostructuring polybenzoxazine thermosets,” J. Polym. Sci. Pol. Chem. 52(7), 952–962 (2014).
[Crossref]

Li, Z.

J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, “Silica-Titania mixed Oxides: Si-O-Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties,” Catal. Lett. 124(3), 185–194 (2008).
[Crossref]

Lin, S. Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, C.

J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
[Crossref]

Liu, S.

J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, “Silica-Titania mixed Oxides: Si-O-Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties,” Catal. Lett. 124(3), 185–194 (2008).
[Crossref]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, Y.

Y. Liu, C. Hsu, and K. Hsu, “Poly(methyl methacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles,” Polymer (Guildf.) 46(6), 1851–1856 (2005).
[Crossref]

Livage, J.

J. Livage and C. Sanchez, “Sol-gel chemistry,” proceedings of the Third International Symposium on Aerogels, J. Non-Cryst. Solids 145, 11–19 (1992).
[Crossref]

Mennig, M.

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites,” J. Sol-Gel Sci. Technol. 19(1), 39–51 (2000).
[Crossref]

Oh, C. S.

C. S. Oh, S. M. Lee, E. H. Kim, E. W. Lee, and L. S. Park, “Electro-Optical Properties of Index Matched ITO-PET Film for Touch Panel Application,” Mol. Cryst. Liquid Cryst. 568(1), 32–37 (2012).
[Crossref]

Park, J.

E. Kim, C. Yang, and J. Park, “The crystallinity and mechanical properties of indium tin oxide coatings on polymer substrates,” J. Appl. Phys. 109(4), 043511 (2011).
[Crossref]

Park, L. S.

C. S. Oh, S. M. Lee, E. H. Kim, E. W. Lee, and L. S. Park, “Electro-Optical Properties of Index Matched ITO-PET Film for Touch Panel Application,” Mol. Cryst. Liquid Cryst. 568(1), 32–37 (2012).
[Crossref]

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

Park, S.

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

Qiu, K. Y.

Z. H. Huang and K. Y. Qiu, “Preparation and thermal property of poly(methyl methacrylate)/silicate hybrid materials by the in-situ sol-gel process,” Polym. Bull. 35(5), 607–613 (1995).
[Crossref]

Ramirez-Bon, R.

E. Rubio, J. Almaral, R. Ramirez-Bon, V. Castano, and V. Rodriguez, “Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica),” Opt. Mater. 27(7), 1266–1269 (2005).
[Crossref]

Ren, J.

J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, “Silica-Titania mixed Oxides: Si-O-Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties,” Catal. Lett. 124(3), 185–194 (2008).
[Crossref]

Rodriguez, V.

E. Rubio, J. Almaral, R. Ramirez-Bon, V. Castano, and V. Rodriguez, “Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica),” Opt. Mater. 27(7), 1266–1269 (2005).
[Crossref]

Rubio, E.

E. Rubio, J. Almaral, R. Ramirez-Bon, V. Castano, and V. Rodriguez, “Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica),” Opt. Mater. 27(7), 1266–1269 (2005).
[Crossref]

Sanchez, C.

J. Livage and C. Sanchez, “Sol-gel chemistry,” proceedings of the Third International Symposium on Aerogels, J. Non-Cryst. Solids 145, 11–19 (1992).
[Crossref]

Sancho-Parramon, J.

J. Sancho-Parramon and V. Janicke, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5-SiO2 mixtures,” J. Phys. D Appl. Phys. 41(21), 215304 (2008).
[Crossref]

Schmidt, H.

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites,” J. Sol-Gel Sci. Technol. 19(1), 39–51 (2000).
[Crossref]

Schottner, G.

G. Schottner, “Hybrid Sol-Gel Derived Polymer: Applications of Multifunctional Materials,” Chem. Mater. 13(10), 3422–3435 (2001).
[Crossref]

Schubert, E. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Seal, S.

A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
[Crossref]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Smith, L. M.

L. M. Smith and M. L. Coote, “Effect of temperature and solvent on polymer tacticity in the free-radical polymerization of styrene and methyl methacrylate,” J. Polym. Sci. Pol. Chem. 51(16), 3351–3358 (2013).
[Crossref]

Sunkara, H. B.

H. B. Sunkara, J. M. Jethmelani, and W. T. Ford, “Composite of Colloidal Crystals of Silica in Poly(methyl methacrylate),” Chem. Mater. 6(4), 362–364 (1994).
[Crossref]

Tao, W.

W. Tao, F. Fei, and W. Y. Chuan, “Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites,” Polym. Bull. 56(4), 413–426 (2006).
[Crossref]

Vincent, A.

A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
[Crossref]

Wang, C.

Y. Hu, C. Chen, and C. Wang, “Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites,” Polym. Degrad. Stabil. 84(3), 545–553 (2004).
[Crossref]

Wei, H.

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xie, K.

J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, “Silica-Titania mixed Oxides: Si-O-Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties,” Catal. Lett. 124(3), 185–194 (2008).
[Crossref]

Xing, Y.

J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, “Silica-Titania mixed Oxides: Si-O-Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties,” Catal. Lett. 124(3), 185–194 (2008).
[Crossref]

Yacaman, M. J.

J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
[Crossref]

Yang, C.

E. Kim, C. Yang, and J. Park, “The crystallinity and mechanical properties of indium tin oxide coatings on polymer substrates,” J. Appl. Phys. 109(4), 043511 (2011).
[Crossref]

Yoon, K.

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

Yu, Y.

Y. Yu, C. Chen, and W. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica,” Polymer (Guildf.) 44(3), 593–601 (2003).
[Crossref]

Zhang, C.

C. Zhang, L. Li, H. Cong, and S. Zheng, “Poly(methyl methacrylate)-block-poly(N-vinyl pyrrolidone) diblock copolymer: A facile synthesis via sequential radical polymerization mediated by isopropylxanthic disulfide and its nanostructuring polybenzoxazine thermosets,” J. Polym. Sci. Pol. Chem. 52(7), 952–962 (2014).
[Crossref]

Zhang, X. Z.

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

Zheng, S.

C. Zhang, L. Li, H. Cong, and S. Zheng, “Poly(methyl methacrylate)-block-poly(N-vinyl pyrrolidone) diblock copolymer: A facile synthesis via sequential radical polymerization mediated by isopropylxanthic disulfide and its nanostructuring polybenzoxazine thermosets,” J. Polym. Sci. Pol. Chem. 52(7), 952–962 (2014).
[Crossref]

Zhuo, R. X.

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

Catal. Lett. (1)

J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, “Silica-Titania mixed Oxides: Si-O-Ti Connectivity, Coordination of Titanium, and Surface Acidic Properties,” Catal. Lett. 124(3), 185–194 (2008).
[Crossref]

Chem. Mater. (6)

C. Chang and W. Chen, “Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films,” Chem. Mater. 14(10), 4242–4248 (2002).
[Crossref]

H. B. Sunkara, J. M. Jethmelani, and W. T. Ford, “Composite of Colloidal Crystals of Silica in Poly(methyl methacrylate),” Chem. Mater. 6(4), 362–364 (1994).
[Crossref]

J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires and Nanoparticles,” Chem. Mater. 17(24), 6042–6052 (2005).
[Crossref]

L. H. Lee and W. C. Chen, “High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)-Titania Materials,” Chem. Mater. 13(3), 1137–1142 (2001).
[Crossref]

G. Schottner, “Hybrid Sol-Gel Derived Polymer: Applications of Multifunctional Materials,” Chem. Mater. 13(10), 3422–3435 (2001).
[Crossref]

S. Y. Chen and S. Cheng, “Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol,” Chem. Mater. 19(12), 3041–3051 (2007).
[Crossref]

J. Appl. Phys. (1)

E. Kim, C. Yang, and J. Park, “The crystallinity and mechanical properties of indium tin oxide coatings on polymer substrates,” J. Appl. Phys. 109(4), 043511 (2011).
[Crossref]

J. Mol. Struct. (1)

R. Al-Oweini and H. El-Rassy, “Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R”Si(OR’)3 precursors,” J. Mol. Struct. 919(1-3), 140–145 (2009).
[Crossref]

J. Non-Cryst. Solids (1)

J. Livage and C. Sanchez, “Sol-gel chemistry,” proceedings of the Third International Symposium on Aerogels, J. Non-Cryst. Solids 145, 11–19 (1992).
[Crossref]

J. Phys. Chem. C (1)

A. Vincent, S. Babu, E. Brinley, A. Karakoti, S. Deshpande, and S. Seal, “Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol-Gel Technique,” J. Phys. Chem. C 111(23), 8291–8298 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Sancho-Parramon and V. Janicke, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5-SiO2 mixtures,” J. Phys. D Appl. Phys. 41(21), 215304 (2008).
[Crossref]

J. Polym. Sci. Pol. Chem. (2)

L. M. Smith and M. L. Coote, “Effect of temperature and solvent on polymer tacticity in the free-radical polymerization of styrene and methyl methacrylate,” J. Polym. Sci. Pol. Chem. 51(16), 3351–3358 (2013).
[Crossref]

C. Zhang, L. Li, H. Cong, and S. Zheng, “Poly(methyl methacrylate)-block-poly(N-vinyl pyrrolidone) diblock copolymer: A facile synthesis via sequential radical polymerization mediated by isopropylxanthic disulfide and its nanostructuring polybenzoxazine thermosets,” J. Polym. Sci. Pol. Chem. 52(7), 952–962 (2014).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites,” J. Sol-Gel Sci. Technol. 19(1), 39–51 (2000).
[Crossref]

Langmuir (1)

H. Wei, C. Cheng, C. Chang, W. Q. Chen, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, “Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate),” Langmuir 24(9), 4564–4570 (2008).
[Crossref] [PubMed]

Macromolecules (1)

J. Du and Y. Chen, “Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate,” Macromolecules 37(17), 6322–6328 (2004).
[Crossref]

Mater. Des. (1)

C. B. Breslin, A. M. Fenelon, and K. G. Conroy, “Surface engineering: corrosion protection using conducting polymers,” Mater. Des. 26(3), 233–237 (2005).
[Crossref]

Mol. Cryst. Liquid Cryst. (2)

S. J. Lee, E. J. Lee, I. Kang, S. Park, K. Yoon, G. Kwak, and L. S. Park, “Fabrication and Performance of Flexible OLEDs AGZO/Ag/AGZO Multilayer Anode on Polyethersulfone Film,” Mol. Cryst. Liquid Cryst. 550(1), 172–182 (2011).
[Crossref]

C. S. Oh, S. M. Lee, E. H. Kim, E. W. Lee, and L. S. Park, “Electro-Optical Properties of Index Matched ITO-PET Film for Touch Panel Application,” Mol. Cryst. Liquid Cryst. 568(1), 32–37 (2012).
[Crossref]

Nanoscale (1)

D. Lee, H. Lee, Y. Ahn, Y. Jeong, D. Y. Lee, and Y. Lee, “Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices,” Nanoscale 5(17), 7750–7755 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Mater. (1)

E. Rubio, J. Almaral, R. Ramirez-Bon, V. Castano, and V. Rodriguez, “Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica),” Opt. Mater. 27(7), 1266–1269 (2005).
[Crossref]

Polym. Bull. (2)

W. Tao, F. Fei, and W. Y. Chuan, “Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites,” Polym. Bull. 56(4), 413–426 (2006).
[Crossref]

Z. H. Huang and K. Y. Qiu, “Preparation and thermal property of poly(methyl methacrylate)/silicate hybrid materials by the in-situ sol-gel process,” Polym. Bull. 35(5), 607–613 (1995).
[Crossref]

Polym. Degrad. Stabil. (1)

Y. Hu, C. Chen, and C. Wang, “Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites,” Polym. Degrad. Stabil. 84(3), 545–553 (2004).
[Crossref]

Polymer (Guildf.) (2)

Y. Liu, C. Hsu, and K. Hsu, “Poly(methyl methacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles,” Polymer (Guildf.) 46(6), 1851–1856 (2005).
[Crossref]

Y. Yu, C. Chen, and W. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica,” Polymer (Guildf.) 44(3), 593–601 (2003).
[Crossref]

Other (7)

W. Choi, “Touch Panel with Improved Pattern Visibility,” Korea Patent WO 2014027781 A1, February 20, 2014.

S. H. Yue, Y. B. Jung, I. S. Kim, M. H. Lee, and J. Cho, “Capacitive Touch Panel with Improved Visibility,” Korea Patent WO 2013005979 A2, January 10, 2013.

S. J. Park, 2012, “Improvement of Light Extraction Efficiency of OLED Utilizing High Refractive Index Organic Material and Optical Simulation”, a master’s thesis, Kyungpook National University Graduate School, Daegu.

J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, 1990).

P. J. Flory, Principle of Polymer Chemistry (Cornell University Press, 1953).

Z. Knittl, Optics of Thin Film (John Wiley, 1981).

H. A. Macleod, Thin-film Optical Filters (Institute of Physics Publishing, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Synthesis of H and L.

Fig. 2
Fig. 2

NMR spectrum of P.

Fig. 3
Fig. 3

FT-IR spectra of P, H, and L. The inset shows the enlarge spectrum of P.

Figures 4
Figures 4

FE-SEM images of the top-down views of (a) P, (b) H, and (c) L thin-films.

Fig. 5
Fig. 5

TGA thermograms of P, H, and L.

Figures 6
Figures 6

Transmittances and refractive indices of (a) H and (b) L thin-films as functions of the wt% of TTIP and NaCl concentration, respectively.

Figures 7
Figures 7

(a) ΔR of the ITO/SiO2/Nb2O5/PET (solid line) and ITO/L/H/PET (dotted line) substrates plotted as a function of wavelength. Photographs of the ITO patterns on (b) ITO/PET and (c) ITO/L/H/PET substrates.

Tables (3)

Tables Icon

Table 1 NMR integration of P; the expected integration and number of protons are based on [MMA]:[MSMA] = 0.78:0.22. The expected integration was normalized with the integration (0.04) of the f (or g or h as they have the same integration) peak

Tables Icon

Table 2 The optical properties at 550 nm of the bare glass, P, H, and L. The H and L films tested were produced with 90 wt% TTIP and 2.5 M NaCl, respectively

Tables Icon

Table 3 Refractive indices and thicknesses of each layer of ITO/SiO2/Nb2O5/PET and ITO/L/H/PET substrates tested

Metrics