Abstract

High energy-transfer rates from Sn2+ to Mn2+ centers are demonstrated in ZnO–P2O5 glass. Emission decay curves of Sn2+ suggest an energy exchange interaction between Sn2+ and Mn2+. It is notable that the high energy-transfer rates are attained for random phosphate glass and that the transfer rate becomes slower with increasing amounts of Mn2+. Because these glasses possess high internal quantum efficiencies independent of the Sn2+ or Mn2+ concentration, we emphasize that effective energy-transfer paths are generated in the transparent glass phosphor, which leads to the development of a transparent inorganic light-emitting material different from conventional rare-earth-containing powdered phosphors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass

Hirokazu Masai, Toshiro Tanimoto, Takumi Fujiwara, Syuji Matsumoto, Yomei Tokuda, and Toshinobu Yoko
Opt. Express 20(25) 27319-27326 (2012)

Luminescence of Sn2+ center in oxide glass with a tendency toward phase separation

Hirokazu Masai, Shun Okumura, Takahiro Ohkubo, and Takayuki Yanagida
Opt. Mater. Express 7(8) 2993-3002 (2017)

White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation

Hirokazu Masai, Takumi Fujiwara, Syuji Matsumoto, Yoshihiro Takahashi, Kenichiro Iwasaki, Yomei Tokuda, and Toshinobu Yoko
Opt. Lett. 36(15) 2868-2870 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook 2nd Edition (CRC Press, 2007).
  2. A. Wachtel, “Sb3+ and Mn2+ activated calcium halophosphate phosphors from flux-grown apatites,” J. Electrochem. Soc. 103, 160–165 (1966).
  3. K. H. Butler and C. W. Jerome, “Calcium halophosphate phosphors I. analysis of emission spectra,” J. Electrochem. Soc. 97(9), 265–270 (1950).
    [Crossref]
  4. M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
    [Crossref]
  5. G. Blasse and A. Bril, “Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+,” J. Chem. Phys. 47(6), 1920–1926 (1967).
    [Crossref]
  6. G. Blasse and A. Bril, “Investigation of some Ce3+ Activated phosphors,” J. Chem. Phys. 47(12), 5139–5145 (1967).
    [Crossref]
  7. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
    [Crossref] [PubMed]
  8. P. Dorenbos, “Systematic behavior in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter 15(49), 8417–8434 (2003).
    [Crossref]
  9. J. A. Jiménez, “Emission properties of Sn2+ and Sm3+ Co-doped barium phosphate glass,” J. Electron. Mater. 43(9), 3588–3592 (2014).
    [Crossref]
  10. A. Muñoz F and J. Rubio O, “Fluorescence of tin-sensitized manganese in single-crystalline NaCl,” Phys. Rev. B Condens. Matter 38(14), 9980–9986 (1988).
    [Crossref] [PubMed]
  11. R. Aceves, G. U. Caldiño, O. J. Rubio, and E. Camarillo, “Nonradiative energy transfer Sn2+→Mn2+ in monocrystalline KBr,” J. Lumin. 65(3), 113–119 (1995).
    [Crossref]
  12. A. Méndez, F. Ramos, R. Guerrero, E. Camarillo, and U. C. Garcí, “Energy transfer mechanisms in the NaBr: Sn2+: Mn2+ phosphor,” J. Lumin. 79(4), 269–274 (1998).
    [Crossref]
  13. P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
    [Crossref]
  14. Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).
  15. U. Caldiño, J. L. Hernández-Pozos, C. Flores, A. Speghini, and M. Bettinelli, “Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses,” J. Phys. Condens. Matter 17(46), 7297–7305 (2005).
    [Crossref]
  16. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
    [Crossref]
  17. R. C. Ropp and R. W. Mooney, “Tin-activated alkaline earth pyrophosphate phosphors,” J. Electrochem. Soc. 107(1), 15–20 (1960).
    [Crossref]
  18. L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
    [Crossref]
  19. R. H. Clapp and R. J. Ginther, “Ultraviolet phosphors and fluorescent sun tan lamps,” J. Opt. Soc. Am. 37(5), 355–362 (1947).
    [Crossref] [PubMed]
  20. T. S. Davis, E. R. Kreidler, J. A. Parodi, and T. F. Soules, “The luminescent properties of antimony in calcium halophosphates,” J. Lumin. 4(1), 48–62 (1971).
    [Crossref]
  21. R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
    [Crossref]
  22. H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
    [Crossref]
  23. H. Masai, T. Fujiwara, S. Matsumoto, Y. Takahashi, K. Iwasaki, Y. Tokuda, and T. Yoko, “White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation,” Opt. Lett. 36(15), 2868–2870 (2011).
    [Crossref] [PubMed]
  24. H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
    [Crossref] [PubMed]
  25. H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
    [Crossref]
  26. H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
    [Crossref]
  27. H. Masai, Y. Hino, T. Yanagida, Y. Fujimoto, and T. Yoko, “Energy transfer from Sn2+ to RE3+ cations in ZnO-P2O5 glass,” Bull. Chem. Soc. Jpn. 87(4), 556–563 (2014).
    [Crossref]
  28. H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO–ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
    [Crossref]
  29. H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).
  30. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  31. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
    [Crossref]
  32. M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
    [Crossref]
  33. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  34. R. Reisfeld and N. Lieblich-Soffer, “Energy transfer from UO22+ to Sm3+ in phosphate glass,” J. Solid State Chem. 28(3), 391–395 (1979).
    [Crossref]
  35. P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
    [Crossref]

2014 (3)

J. A. Jiménez, “Emission properties of Sn2+ and Sm3+ Co-doped barium phosphate glass,” J. Electron. Mater. 43(9), 3588–3592 (2014).
[Crossref]

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, Y. Hino, T. Yanagida, Y. Fujimoto, and T. Yoko, “Energy transfer from Sn2+ to RE3+ cations in ZnO-P2O5 glass,” Bull. Chem. Soc. Jpn. 87(4), 556–563 (2014).
[Crossref]

2012 (4)

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO–ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).

2005 (1)

U. Caldiño, J. L. Hernández-Pozos, C. Flores, A. Speghini, and M. Bettinelli, “Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses,” J. Phys. Condens. Matter 17(46), 7297–7305 (2005).
[Crossref]

2004 (2)

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
[Crossref]

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2003 (3)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

P. Dorenbos, “Systematic behavior in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter 15(49), 8417–8434 (2003).
[Crossref]

1999 (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

1998 (1)

A. Méndez, F. Ramos, R. Guerrero, E. Camarillo, and U. C. Garcí, “Energy transfer mechanisms in the NaBr: Sn2+: Mn2+ phosphor,” J. Lumin. 79(4), 269–274 (1998).
[Crossref]

1995 (1)

R. Aceves, G. U. Caldiño, O. J. Rubio, and E. Camarillo, “Nonradiative energy transfer Sn2+→Mn2+ in monocrystalline KBr,” J. Lumin. 65(3), 113–119 (1995).
[Crossref]

1992 (1)

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

1988 (1)

A. Muñoz F and J. Rubio O, “Fluorescence of tin-sensitized manganese in single-crystalline NaCl,” Phys. Rev. B Condens. Matter 38(14), 9980–9986 (1988).
[Crossref] [PubMed]

1985 (1)

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

1979 (1)

R. Reisfeld and N. Lieblich-Soffer, “Energy transfer from UO22+ to Sm3+ in phosphate glass,” J. Solid State Chem. 28(3), 391–395 (1979).
[Crossref]

1975 (1)

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

1971 (2)

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

T. S. Davis, E. R. Kreidler, J. A. Parodi, and T. F. Soules, “The luminescent properties of antimony in calcium halophosphates,” J. Lumin. 4(1), 48–62 (1971).
[Crossref]

1967 (2)

G. Blasse and A. Bril, “Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+,” J. Chem. Phys. 47(6), 1920–1926 (1967).
[Crossref]

G. Blasse and A. Bril, “Investigation of some Ce3+ Activated phosphors,” J. Chem. Phys. 47(12), 5139–5145 (1967).
[Crossref]

1966 (1)

A. Wachtel, “Sb3+ and Mn2+ activated calcium halophosphate phosphors from flux-grown apatites,” J. Electrochem. Soc. 103, 160–165 (1966).

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

1960 (1)

R. C. Ropp and R. W. Mooney, “Tin-activated alkaline earth pyrophosphate phosphors,” J. Electrochem. Soc. 107(1), 15–20 (1960).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

1950 (1)

K. H. Butler and C. W. Jerome, “Calcium halophosphate phosphors I. analysis of emission spectra,” J. Electrochem. Soc. 97(9), 265–270 (1950).
[Crossref]

1947 (1)

Aceves, R.

R. Aceves, G. U. Caldiño, O. J. Rubio, and E. Camarillo, “Nonradiative energy transfer Sn2+→Mn2+ in monocrystalline KBr,” J. Lumin. 65(3), 113–119 (1995).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Barnett, B.

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Bettinelli, M.

U. Caldiño, J. L. Hernández-Pozos, C. Flores, A. Speghini, and M. Bettinelli, “Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses,” J. Phys. Condens. Matter 17(46), 7297–7305 (2005).
[Crossref]

Blasse, G.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

G. Blasse and A. Bril, “Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+,” J. Chem. Phys. 47(6), 1920–1926 (1967).
[Crossref]

G. Blasse and A. Bril, “Investigation of some Ce3+ Activated phosphors,” J. Chem. Phys. 47(12), 5139–5145 (1967).
[Crossref]

Boehm, L.

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Bril, A.

G. Blasse and A. Bril, “Investigation of some Ce3+ Activated phosphors,” J. Chem. Phys. 47(12), 5139–5145 (1967).
[Crossref]

G. Blasse and A. Bril, “Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+,” J. Chem. Phys. 47(6), 1920–1926 (1967).
[Crossref]

Butler, K. H.

K. H. Butler and C. W. Jerome, “Calcium halophosphate phosphors I. analysis of emission spectra,” J. Electrochem. Soc. 97(9), 265–270 (1950).
[Crossref]

Caldiño, G. U.

R. Aceves, G. U. Caldiño, O. J. Rubio, and E. Camarillo, “Nonradiative energy transfer Sn2+→Mn2+ in monocrystalline KBr,” J. Lumin. 65(3), 113–119 (1995).
[Crossref]

Caldiño, U.

U. Caldiño, J. L. Hernández-Pozos, C. Flores, A. Speghini, and M. Bettinelli, “Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses,” J. Phys. Condens. Matter 17(46), 7297–7305 (2005).
[Crossref]

Camarillo, E.

A. Méndez, F. Ramos, R. Guerrero, E. Camarillo, and U. C. Garcí, “Energy transfer mechanisms in the NaBr: Sn2+: Mn2+ phosphor,” J. Lumin. 79(4), 269–274 (1998).
[Crossref]

R. Aceves, G. U. Caldiño, O. J. Rubio, and E. Camarillo, “Nonradiative energy transfer Sn2+→Mn2+ in monocrystalline KBr,” J. Lumin. 65(3), 113–119 (1995).
[Crossref]

Chen, G.

Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).

Choi, J. C.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
[Crossref]

Clapp, R. H.

Davis, T. S.

T. S. Davis, E. R. Kreidler, J. A. Parodi, and T. F. Soules, “The luminescent properties of antimony in calcium halophosphates,” J. Lumin. 4(1), 48–62 (1971).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Donker, H.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Dorenbos, P.

P. Dorenbos, “Systematic behavior in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter 15(49), 8417–8434 (2003).
[Crossref]

Flores, C.

U. Caldiño, J. L. Hernández-Pozos, C. Flores, A. Speghini, and M. Bettinelli, “Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses,” J. Phys. Condens. Matter 17(46), 7297–7305 (2005).
[Crossref]

Fujimoto, Y.

H. Masai, Y. Hino, T. Yanagida, Y. Fujimoto, and T. Yoko, “Energy transfer from Sn2+ to RE3+ cations in ZnO-P2O5 glass,” Bull. Chem. Soc. Jpn. 87(4), 556–563 (2014).
[Crossref]

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

Fujiwara, T.

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Fujiwara, S. Matsumoto, Y. Takahashi, K. Iwasaki, Y. Tokuda, and T. Yoko, “White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation,” Opt. Lett. 36(15), 2868–2870 (2011).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Garcí, U. C.

A. Méndez, F. Ramos, R. Guerrero, E. Camarillo, and U. C. Garcí, “Energy transfer mechanisms in the NaBr: Sn2+: Mn2+ phosphor,” J. Lumin. 79(4), 269–274 (1998).
[Crossref]

Ginther, R. J.

Guerrero, R.

A. Méndez, F. Ramos, R. Guerrero, E. Camarillo, and U. C. Garcí, “Energy transfer mechanisms in the NaBr: Sn2+: Mn2+ phosphor,” J. Lumin. 79(4), 269–274 (1998).
[Crossref]

Hernández-Pozos, J. L.

U. Caldiño, J. L. Hernández-Pozos, C. Flores, A. Speghini, and M. Bettinelli, “Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses,” J. Phys. Condens. Matter 17(46), 7297–7305 (2005).
[Crossref]

Hino, Y.

H. Masai, Y. Hino, T. Yanagida, Y. Fujimoto, and T. Yoko, “Energy transfer from Sn2+ to RE3+ cations in ZnO-P2O5 glass,” Bull. Chem. Soc. Jpn. 87(4), 556–563 (2014).
[Crossref]

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

Inoue, S.

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO–ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

Iwasaki, K.

Jeon, P. E.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
[Crossref]

Jerome, C. W.

K. H. Butler and C. W. Jerome, “Calcium halophosphate phosphors I. analysis of emission spectra,” J. Electrochem. Soc. 97(9), 265–270 (1950).
[Crossref]

Jiménez, J. A.

J. A. Jiménez, “Emission properties of Sn2+ and Sm3+ Co-doped barium phosphate glass,” J. Electron. Mater. 43(9), 3588–3592 (2014).
[Crossref]

Jose, G.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Kim, G. C.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
[Crossref]

Kim, J. S.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
[Crossref]

Koshimizu, M.

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

Koskentalo, T.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Kreidler, E. R.

T. S. Davis, E. R. Kreidler, J. A. Parodi, and T. F. Soules, “The luminescent properties of antimony in calcium halophosphates,” J. Lumin. 4(1), 48–62 (1971).
[Crossref]

Leskelä, M.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

Liang, X.

Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).

Lieblich-Soffer, N.

R. Reisfeld and N. Lieblich-Soffer, “Energy transfer from UO22+ to Sm3+ in phosphate glass,” J. Solid State Chem. 28(3), 391–395 (1979).
[Crossref]

Liu, Y.

Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).

Masai, H.

H. Masai, Y. Hino, T. Yanagida, Y. Fujimoto, and T. Yoko, “Energy transfer from Sn2+ to RE3+ cations in ZnO-P2O5 glass,” Bull. Chem. Soc. Jpn. 87(4), 556–563 (2014).
[Crossref]

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Fujiwara, S. Matsumoto, Y. Takahashi, K. Iwasaki, Y. Tokuda, and T. Yoko, “White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation,” Opt. Lett. 36(15), 2868–2870 (2011).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Matsumoto, S.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Fujiwara, S. Matsumoto, Y. Takahashi, K. Iwasaki, Y. Tokuda, and T. Yoko, “White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation,” Opt. Lett. 36(15), 2868–2870 (2011).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Meijerink, A.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Méndez, A.

A. Méndez, F. Ramos, R. Guerrero, E. Camarillo, and U. C. Garcí, “Energy transfer mechanisms in the NaBr: Sn2+: Mn2+ phosphor,” J. Lumin. 79(4), 269–274 (1998).
[Crossref]

Mho, S. I.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
[Crossref]

Mooney, R. W.

R. C. Ropp and R. W. Mooney, “Tin-activated alkaline earth pyrophosphate phosphors,” J. Electrochem. Soc. 107(1), 15–20 (1960).
[Crossref]

Muñoz F, A.

A. Muñoz F and J. Rubio O, “Fluorescence of tin-sensitized manganese in single-crystalline NaCl,” Phys. Rev. B Condens. Matter 38(14), 9980–9986 (1988).
[Crossref] [PubMed]

Nomura, K.

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO–ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

Okumura, S.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

Oskam, K. D.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Park, H. L.

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
[Crossref]

Parodi, J. A.

T. S. Davis, E. R. Kreidler, J. A. Parodi, and T. F. Soules, “The luminescent properties of antimony in calcium halophosphates,” J. Lumin. 4(1), 48–62 (1971).
[Crossref]

Paulose, P. I.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Ramos, F.

A. Méndez, F. Ramos, R. Guerrero, E. Camarillo, and U. C. Garcí, “Energy transfer mechanisms in the NaBr: Sn2+: Mn2+ phosphor,” J. Lumin. 79(4), 269–274 (1998).
[Crossref]

Reisfeld, R.

R. Reisfeld and N. Lieblich-Soffer, “Energy transfer from UO22+ to Sm3+ in phosphate glass,” J. Solid State Chem. 28(3), 391–395 (1979).
[Crossref]

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Ropp, R. C.

R. C. Ropp and R. W. Mooney, “Tin-activated alkaline earth pyrophosphate phosphors,” J. Electrochem. Soc. 107(1), 15–20 (1960).
[Crossref]

Rubio, O. J.

R. Aceves, G. U. Caldiño, O. J. Rubio, and E. Camarillo, “Nonradiative energy transfer Sn2+→Mn2+ in monocrystalline KBr,” J. Lumin. 65(3), 113–119 (1995).
[Crossref]

Rubio O, J.

A. Muñoz F and J. Rubio O, “Fluorescence of tin-sensitized manganese in single-crystalline NaCl,” Phys. Rev. B Condens. Matter 38(14), 9980–9986 (1988).
[Crossref] [PubMed]

Segawa, H.

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO–ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

Skuja, L.

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

Soules, T. F.

T. S. Davis, E. R. Kreidler, J. A. Parodi, and T. F. Soules, “The luminescent properties of antimony in calcium halophosphates,” J. Lumin. 4(1), 48–62 (1971).
[Crossref]

Speghini, A.

U. Caldiño, J. L. Hernández-Pozos, C. Flores, A. Speghini, and M. Bettinelli, “Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses,” J. Phys. Condens. Matter 17(46), 7297–7305 (2005).
[Crossref]

Takahashi, Y.

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

H. Masai, T. Fujiwara, S. Matsumoto, Y. Takahashi, K. Iwasaki, Y. Tokuda, and T. Yoko, “White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation,” Opt. Lett. 36(15), 2868–2870 (2011).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Tanimoto, T.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

Teramura, K.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

Thomas, V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Tokuda, Y.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Fujiwara, S. Matsumoto, Y. Takahashi, K. Iwasaki, Y. Tokuda, and T. Yoko, “White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation,” Opt. Lett. 36(15), 2868–2870 (2011).
[Crossref] [PubMed]

Unnikrishnan, N. V.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Wachtel, A.

A. Wachtel, “Sb3+ and Mn2+ activated calcium halophosphate phosphors from flux-grown apatites,” J. Electrochem. Soc. 103, 160–165 (1966).

Wang, S.

Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).

Warrier, M. K. R.

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Weber, M. J.

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

Wegh, R. T.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Xing, Z.

Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).

Yanagida, T.

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, Y. Hino, T. Yanagida, Y. Fujimoto, and T. Yoko, “Energy transfer from Sn2+ to RE3+ cations in ZnO-P2O5 glass,” Bull. Chem. Soc. Jpn. 87(4), 556–563 (2014).
[Crossref]

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

Yoko, T.

H. Masai, Y. Hino, T. Yanagida, Y. Fujimoto, and T. Yoko, “Energy transfer from Sn2+ to RE3+ cations in ZnO-P2O5 glass,” Bull. Chem. Soc. Jpn. 87(4), 556–563 (2014).
[Crossref]

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Tokuda, and T. Yoko, “Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass,” Opt. Express 20(25), 27319–27326 (2012).
[Crossref] [PubMed]

H. Masai, T. Fujiwara, S. Matsumoto, Y. Takahashi, K. Iwasaki, Y. Tokuda, and T. Yoko, “White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation,” Opt. Lett. 36(15), 2868–2870 (2011).
[Crossref] [PubMed]

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Zou, Z.

Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).

Appl. Phys. Express (1)

H. Masai, Y. Takahashi, T. Fujiwara, S. Matsumoto, and T. Yoko, “High photoluminescent property of low-melting Sn-doped phosphate glass,” Appl. Phys. Express 3(8), 082102 (2010).
[Crossref]

Appl. Phys. Lett. (2)

H. Masai, T. Yanagida, Y. Fujimoto, M. Koshimizu, and T. Yoko, “Scintillation property of rare earth-free SnO-doped oxide glass,” Appl. Phys. Lett. 101(19), 191906 (2012).
[Crossref]

J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931–2934 (2004).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

H. Masai, Y. Hino, T. Yanagida, Y. Fujimoto, and T. Yoko, “Energy transfer from Sn2+ to RE3+ cations in ZnO-P2O5 glass,” Bull. Chem. Soc. Jpn. 87(4), 556–563 (2014).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (1)

Y. Liu, Z. Zou, X. Liang, S. Wang, Z. Xing, and G. Chen, “Energy transfer and photoluminescence of zinc phosphate glasses co-doped with Tb3+ and Mn2+,” J. Am. Ceram. Soc. 93, 1891–1893 (2010).

J. Chem. Phys. (4)

G. Blasse and A. Bril, “Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+,” J. Chem. Phys. 47(6), 1920–1926 (1967).
[Crossref]

G. Blasse and A. Bril, “Investigation of some Ce3+ Activated phosphors,” J. Chem. Phys. 47(12), 5139–5145 (1967).
[Crossref]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

J. Electrochem. Soc. (3)

A. Wachtel, “Sb3+ and Mn2+ activated calcium halophosphate phosphors from flux-grown apatites,” J. Electrochem. Soc. 103, 160–165 (1966).

K. H. Butler and C. W. Jerome, “Calcium halophosphate phosphors I. analysis of emission spectra,” J. Electrochem. Soc. 97(9), 265–270 (1950).
[Crossref]

R. C. Ropp and R. W. Mooney, “Tin-activated alkaline earth pyrophosphate phosphors,” J. Electrochem. Soc. 107(1), 15–20 (1960).
[Crossref]

J. Electron. Mater. (1)

J. A. Jiménez, “Emission properties of Sn2+ and Sm3+ Co-doped barium phosphate glass,” J. Electron. Mater. 43(9), 3588–3592 (2014).
[Crossref]

J. Lumin. (3)

R. Aceves, G. U. Caldiño, O. J. Rubio, and E. Camarillo, “Nonradiative energy transfer Sn2+→Mn2+ in monocrystalline KBr,” J. Lumin. 65(3), 113–119 (1995).
[Crossref]

A. Méndez, F. Ramos, R. Guerrero, E. Camarillo, and U. C. Garcí, “Energy transfer mechanisms in the NaBr: Sn2+: Mn2+ phosphor,” J. Lumin. 79(4), 269–274 (1998).
[Crossref]

T. S. Davis, E. R. Kreidler, J. A. Parodi, and T. F. Soules, “The luminescent properties of antimony in calcium halophosphates,” J. Lumin. 4(1), 48–62 (1971).
[Crossref]

J. Mater. Chem. C (1)

H. Masai, T. Tanimoto, S. Okumura, K. Teramura, S. Matsumoto, T. Yanagida, Y. Tokuda, and T. Yoko, “Correlation between preparation conditions and the photoluminescence properties of Sn2+ centers in ZnO-P2O5 glasses,” J. Mater. Chem. C 2(12), 2137–2143 (2014).
[Crossref]

J. Non-Cryst. Solids (2)

H. Segawa, S. Inoue, and K. Nomura, “Electronic states of SnO–ZnO–P2O5 glasses and photoluminescence properties,” J. Non-Cryst. Solids 358(11), 1333–1338 (2012).
[Crossref]

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

J. Non-Crystal. Solids (1)

H. Masai, T. Tanimoto, T. Fujiwara, S. Matsumoto, Y. Takahashi, Y. Tokuda, and T. Yoko, “Fabrication of Sn-doped zinc phosphate glass using a platinum crucible,” J. Non-Crystal. Solids 358, 265–269 (2012).

J. Opt. Soc. Am. (1)

J. Phys. Chem. Solids (2)

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

J. Phys. Condens. Matter (2)

U. Caldiño, J. L. Hernández-Pozos, C. Flores, A. Speghini, and M. Bettinelli, “Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses,” J. Phys. Condens. Matter 17(46), 7297–7305 (2005).
[Crossref]

P. Dorenbos, “Systematic behavior in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter 15(49), 8417–8434 (2003).
[Crossref]

J. Solid State Chem. (3)

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr1-xMnxB6O10,” J. Solid State Chem. 59(3), 272–279 (1985).
[Crossref]

R. Reisfeld and N. Lieblich-Soffer, “Energy transfer from UO22+ to Sm3+ in phosphate glass,” J. Solid State Chem. 28(3), 391–395 (1979).
[Crossref]

R. Reisfeld, L. Boehm, and B. Barnett, “Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses,” J. Solid State Chem. 15(2), 140–150 (1975).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

Phys. Rev. B Condens. Matter (1)

A. Muñoz F and J. Rubio O, “Fluorescence of tin-sensitized manganese in single-crystalline NaCl,” Phys. Rev. B Condens. Matter 38(14), 9980–9986 (1988).
[Crossref] [PubMed]

Science (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science 283(5402), 663–666 (1999).
[Crossref] [PubMed]

Other (1)

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook 2nd Edition (CRC Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical absorption spectra of xMn-5.0SZP glasses. The inset shows magnified spectra around absorption edges.
Fig. 2
Fig. 2 PL spectra of xMn-5.0SZP glasses. The excitation energy was 4.5 eV.
Fig. 3
Fig. 3 (a) PL emission decay curves of Sn2+ centers in xMnO-5.0SZP glasses (excitation at 4.43 eV and emission at 3.1 eV). Dots indicate experimental data and lines are the corresponding fitting curves obtained using Eq. (1). (b) τ1/e values of xMnO-1SZP and xMnO-5.0SZP glasses as a function of the MnO amount.
Fig. 4
Fig. 4 Energy-transfer efficiency of xMnO-SZP glasses (a) as a function of the Mn2+ amount and (b) as a function of the Mn2+/Sn2+ ratio.
Fig. 5
Fig. 5 QE values for xMnO-1SZP and xMnO-5.0SZP glasses as a function of the MnO amount.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) = exp [ t τ D γ 3 C C 0 g ( e γ t τ D ) ] .
γ=2 R 0 /L.
g(z)= ( lnz ) 3 + h 1 ( lnz ) 2 + h 2 ( lnz )+ h 3 +O[ e z (lnz) 3 z 2 ]
η ET = 1τ/ τ D.

Metrics