Abstract

Polymer-based diffuse reflectors are cost-effective and high performance alternatives to metallic reflectors and multilayered dielectric mirrors in optical and photonic modules. In this study, we optimized the reflectance of high performance polymer-based reflectors by controlling filler particle size. We use a simple analytical model to investigate the critical size of inorganic fillers required to obtain the highest reflectance with a lower filler volume fraction and reflector thickness. The key model predictions show good agreement with our experimental data using Al2O3-silicone and TiO2-silicone composite reflectors. Our results demonstrate for the first time that for inorganic fillers, the effect of filler size on reflectance is non-monotonic, and a critical filler size ranging from one submicron to several microns provides the maximum reflectance. We observed a 50% difference in optical reflectance between 1 micron and 35 micron Al2O3 at 0.1 volume fraction. A significant improvement in reflectance for polymer-filler reflectors can be realized by utilizing optimized filler size, in order to increase the performance-price ratio for optical and photonic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical characterization method for black pigments applied to solar-selective absorbing paints

Tuquabo Tesfamichael, Anders Hoel, Gunnar A. Niklasson, Ewa Wäckelgård, Marta K. Gunde, and Zorica C. Orel
Appl. Opt. 40(10) 1672-1681 (2001)

Glass flake reinforced composites as optical materials

Paul N. Dunlap
Appl. Opt. 30(13) 1701-1710 (1991)

References

  • View by:
  • |
  • |
  • |

  1. Y. Taguchi and J. Sawada, “White heat-curable silicone resin composition and optoelectronic part case.” US Patent No. 8,173,053 B2 (2012)
  2. J. Mozzochette and E. Amaya, “Light emitting diode arrays with improved light extraction.” US Patent No. 0225222 A1 (2005)
  3. E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
    [Crossref]
  4. J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
    [Crossref] [PubMed]
  5. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  6. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  7. A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
    [Crossref]
  8. M. Kumei, T. Sakai, and M. Sato, “Light emitting device with a porous alumina reflector made of aggregation of alumina particles” US Patent No. 8,106,413 B2 (2012)
  9. H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
    [Crossref]
  10. A. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, and S. L. Yan, “Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells,” Opt. Express 22(S3Suppl 3), A880–A894 (2014).
    [Crossref] [PubMed]
  11. O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
    [Crossref]
  12. D. Chundury, R. Abrams, R. M. Harris, M. Ali, T. G. McGee, and S. T. Schmidt, “Light reflecting polymeric compositions” U.S. Patent 6,838,494 B2, (2002)
  13. B. Maheu, J. N. Letoulouzan, and G. Gouesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters,” Appl. Opt. 23(19), 3353–3362 (1984).
    [Crossref] [PubMed]
  14. W. E. Vargas and G. A. Niklasson, “Applicability conditions of the Kubelka-Munk theory,” Appl. Opt. 36(22), 5580–5586 (1997).
    [Crossref] [PubMed]
  15. W. E. Vargas, “Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering,” J. Appl. Phys. 88(7), 4079–4084 (2000).
    [Crossref]
  16. J. C. Auger, R. G. Barrera, and B. Stout, “Scattering efficiency of clusters composed by aggregated spheres,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).
    [Crossref]
  17. J. A. Johnson, J. J. Heidenreich, R. A. Mantz, P. M. Baker, and M. S. Donley, “A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings,” Prog. Org. Coat. 47(3), 432–442 (2003).
    [Crossref]
  18. W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
    [Crossref]
  19. J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100(E4), 7465–7477 (1995).
    [Crossref]
  20. N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27(22), 5145–5150 (2009).
    [Crossref]
  21. L. Y. Her, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech. 33(4), 761–766 (2010).
    [Crossref]
  22. W. Xu and S. C. Shen, “Infrared radiation and reflection in an inhomogeneous coating layer on a substrate,” Appl. Opt. 31(22), 4488–4496 (1992).
    [Crossref] [PubMed]
  23. A. G. Emslie and J. R. Aronson, “Spectral reflectance and emittance of particulate materials. 1: theory,” Appl. Opt. 12(11), 2563–2572 (1973).
    [Crossref] [PubMed]

2014 (3)

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
[Crossref]

A. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, and S. L. Yan, “Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells,” Opt. Express 22(S3Suppl 3), A880–A894 (2014).
[Crossref] [PubMed]

2013 (1)

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

2011 (1)

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

2010 (1)

L. Y. Her, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech. 33(4), 761–766 (2010).
[Crossref]

2009 (1)

2007 (1)

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

2006 (1)

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

2003 (2)

J. C. Auger, R. G. Barrera, and B. Stout, “Scattering efficiency of clusters composed by aggregated spheres,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).
[Crossref]

J. A. Johnson, J. J. Heidenreich, R. A. Mantz, P. M. Baker, and M. S. Donley, “A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings,” Prog. Org. Coat. 47(3), 432–442 (2003).
[Crossref]

2000 (1)

W. E. Vargas, “Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering,” J. Appl. Phys. 88(7), 4079–4084 (2000).
[Crossref]

1997 (2)

1995 (1)

J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100(E4), 7465–7477 (1995).
[Crossref]

1993 (1)

1992 (1)

1984 (1)

1973 (1)

Aberle, A. G.

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

Amador, A.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

Aronson, J. R.

Auger, J. C.

J. C. Auger, R. G. Barrera, and B. Stout, “Scattering efficiency of clusters composed by aggregated spheres,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).
[Crossref]

Baker, P. M.

J. A. Johnson, J. J. Heidenreich, R. A. Mantz, P. M. Baker, and M. S. Donley, “A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings,” Prog. Org. Coat. 47(3), 432–442 (2003).
[Crossref]

Barrera, R. G.

J. C. Auger, R. G. Barrera, and B. Stout, “Scattering efficiency of clusters composed by aggregated spheres,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).
[Crossref]

Bauer, A.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Berger, O.

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

Bixler, J. N.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

Carius, R.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Chen, H.

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

Chen, P. Y.

A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
[Crossref]

Christensen, P. R.

J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100(E4), 7465–7477 (1995).
[Crossref]

Cone, M. T.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

Cui, Y.

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

Donley, M. S.

J. A. Johnson, J. J. Heidenreich, R. A. Mantz, P. M. Baker, and M. S. Donley, “A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings,” Prog. Org. Coat. 47(3), 432–442 (2003).
[Crossref]

Emslie, A. G.

Figueroa, E.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

Fry, E. S.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

Fu, S. M.

A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
[Crossref]

A. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, and S. L. Yan, “Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells,” Opt. Express 22(S3Suppl 3), A880–A894 (2014).
[Crossref] [PubMed]

Gao, H.

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

Gouesbet, G.

Heidenreich, J. J.

J. A. Johnson, J. J. Heidenreich, R. A. Mantz, P. M. Baker, and M. S. Donley, “A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings,” Prog. Org. Coat. 47(3), 432–442 (2003).
[Crossref]

Her, L. Y.

L. Y. Her, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech. 33(4), 761–766 (2010).
[Crossref]

Hokr, B. H.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

Inns, D.

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

Johnson, J. A.

J. A. Johnson, J. J. Heidenreich, R. A. Mantz, P. M. Baker, and M. S. Donley, “A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings,” Prog. Org. Coat. 47(3), 432–442 (2003).
[Crossref]

Ju, N. P.

A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
[Crossref]

Letoulouzan, J. N.

Lin, A.

A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
[Crossref]

A. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, and S. L. Yan, “Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells,” Opt. Express 22(S3Suppl 3), A880–A894 (2014).
[Crossref] [PubMed]

Lin, Y. C.

L. Y. Her, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech. 33(4), 761–766 (2010).
[Crossref]

Liu, H.

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

Liu, J.

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

Maheu, B.

Mantz, R. A.

J. A. Johnson, J. J. Heidenreich, R. A. Mantz, P. M. Baker, and M. S. Donley, “A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings,” Prog. Org. Coat. 47(3), 432–442 (2003).
[Crossref]

Mason, J. D.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

Moersch, J. E.

J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100(E4), 7465–7477 (1995).
[Crossref]

Moulin, E.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Niklasson, G. A.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

W. E. Vargas and G. A. Niklasson, “Applicability conditions of the Kubelka-Munk theory,” Appl. Opt. 36(22), 5580–5586 (1997).
[Crossref] [PubMed]

Paetzold, U. W.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Pope, R. M.

Prahl, S. A.

Scully, M. O.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

Shen, S. C.

Shi, F. G.

L. Y. Her, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech. 33(4), 761–766 (2010).
[Crossref]

N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27(22), 5145–5150 (2009).
[Crossref]

Siekmann, H.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Stout, B.

J. C. Auger, R. G. Barrera, and B. Stout, “Scattering efficiency of clusters composed by aggregated spheres,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).
[Crossref]

Tran, N. T.

L. Y. Her, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech. 33(4), 761–766 (2010).
[Crossref]

N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27(22), 5145–5150 (2009).
[Crossref]

Tseng, C. W.

A. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, and S. L. Yan, “Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells,” Opt. Express 22(S3Suppl 3), A880–A894 (2014).
[Crossref] [PubMed]

A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
[Crossref]

van Gemert, M. J. C.

Vargas, W. E.

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

W. E. Vargas, “Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering,” J. Appl. Phys. 88(7), 4079–4084 (2000).
[Crossref]

W. E. Vargas and G. A. Niklasson, “Applicability conditions of the Kubelka-Munk theory,” Appl. Opt. 36(22), 5580–5586 (1997).
[Crossref] [PubMed]

Welch, A. J.

Worbs, J.

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

Xu, W.

Yakovlev, V. V.

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

Yan, S. L.

You, J. P.

L. Y. Her, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech. 33(4), 761–766 (2010).
[Crossref]

N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27(22), 5145–5150 (2009).
[Crossref]

Zhang, P.

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

Zhang, X.

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

Zhong, Y. K.

A. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, and S. L. Yan, “Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells,” Opt. Express 22(S3Suppl 3), A880–A894 (2014).
[Crossref] [PubMed]

A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
[Crossref]

Appl. Opt. (6)

Energy Procedia (1)

E. Moulin, U. W. Paetzold, H. Siekmann, J. Worbs, A. Bauer, and R. Carius, “Study of thin-film silicon solar cell back reflectors and potential of detached reflectors,” Energy Procedia 10, 106–110 (2011).
[Crossref]

IEEE Trans. Compon. Packag. Tech. (1)

L. Y. Her, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech. 33(4), 761–766 (2010).
[Crossref]

J. Appl. Phys. (2)

W. E. Vargas, “Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering,” J. Appl. Phys. 88(7), 4079–4084 (2000).
[Crossref]

A. Lin, S. M. Fu, Y. K. Zhong, C. W. Tseng, P. Y. Chen, and N. P. Ju, “The rigorous wave optics design of diffuse medium reflectors for photovoltaics,” J. Appl. Phys. 115(15), 153105 (2014).
[Crossref]

J. Geophys. Res. (1)

J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100(E4), 7465–7477 (1995).
[Crossref]

J. Lightwave Technol. (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

J. C. Auger, R. G. Barrera, and B. Stout, “Scattering efficiency of clusters composed by aggregated spheres,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 521–531 (2003).
[Crossref]

Opt. Commun. (1)

W. E. Vargas, A. Amador, and G. A. Niklasson, “Diffuse reflectance of TiO2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio,” Opt. Commun. 261(1), 71–78 (2006).
[Crossref]

Opt. Eng. (1)

H. Gao, H. Chen, X. Zhang, P. Zhang, J. Liu, H. Liu, and Y. Cui, “High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector,” Opt. Eng. 52(6), 063402 (2013).
[Crossref]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. N. Bixler, M. T. Cone, B. H. Hokr, J. D. Mason, E. Figueroa, E. S. Fry, V. V. Yakovlev, and M. O. Scully, “Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 111(20), 7208–7211 (2014).
[Crossref] [PubMed]

Prog. Org. Coat. (1)

J. A. Johnson, J. J. Heidenreich, R. A. Mantz, P. M. Baker, and M. S. Donley, “A multiple-scattering model analysis of zinc oxide pigment for spacecraft thermal control coatings,” Prog. Org. Coat. 47(3), 432–442 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

O. Berger, D. Inns, and A. G. Aberle, “Commercial white paint as back surface reflector for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 91(13), 1215–1221 (2007).
[Crossref]

Other (4)

D. Chundury, R. Abrams, R. M. Harris, M. Ali, T. G. McGee, and S. T. Schmidt, “Light reflecting polymeric compositions” U.S. Patent 6,838,494 B2, (2002)

M. Kumei, T. Sakai, and M. Sato, “Light emitting device with a porous alumina reflector made of aggregation of alumina particles” US Patent No. 8,106,413 B2 (2012)

Y. Taguchi and J. Sawada, “White heat-curable silicone resin composition and optoelectronic part case.” US Patent No. 8,173,053 B2 (2012)

J. Mozzochette and E. Amaya, “Light emitting diode arrays with improved light extraction.” US Patent No. 0225222 A1 (2005)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of light scattering in silicone-filler composite reflectors.
Fig. 2
Fig. 2 The prediction of reflectance as a function of filler size-wavelength ratio for composite reflectors with different filler-matrix refractive index ratio (RIR = nfiller/nmatrix) at wavelength of 450nm.
Fig. 3
Fig. 3 The prediction of critical filler size as a function of RIR (a). for polymer-based reflectors at different wavelength and (b). for silicone-based reflectors at wavelength of 450nm. The symbols indicate the measured optimized filler size with different fillers (left: Al2O3, right: TiO2) and the line shows the calculated optimized filler size based on model.
Fig. 4
Fig. 4 Normalized reflectance vs. particle size for 3mm thick (a) Al2O3-silicone composites and (b) TiO2-silicone composites at wavelength of 450nm with 0.1 filler volume fraction. For better comparison, reflectance is normalized by setting the highest value as 1. The circles indicate the measured reflectance and the lines show the calculated reflectance based on model.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Sx= 1 ( 1 R R ) ln( 1R R 1 R R )
Q ext =2 2λ (n1)πd sin[ 2(n1)πd λ ]+ 4 λ 2 [ 2( n1 )πd ] 2 { 1cos[ 2(n1)πd λ ] }
Q sca = 8 π 4 3 ( d 4 λ 4 )( n 2 1 n 2 +2 ) ( n m ) 4
S= 3f 4 V p C sca (1g)Y= 9f 8d Q sca (1g)Y
R= 1 e [ 9f 8d {2 2λ (n1)πd sin 2(n1)πd λ + 4 λ 2 [2(n1)πd] 2 [1cos 2(n1)πd λ ]}x( 1 R R )](1g)Y R e [ 9f 8d {2 2λ (n1)πd sin 2(n1)πd λ + 4 λ 2 [2(n1)πd] 2 [1cos 2(n1)πd λ ]}x( 1 R R )](1g)Y
R= 1 e { 9f 8d [ 8 π 3 3 ( d 4 λ 4 )( n 2 1 n 2 +2 ) ( n m ) 4 ]x( 1 R R )](1g)Y R e { 9f 8d [ 8 π 3 3 ( d 4 λ 4 )( n 2 1 n 2 +2 ) ( n m ) 4 ]x( 1 R R )](1g)Y

Metrics