Abstract

We present a fabrication method for flexible optically tunable terahertz metamaterial membranes based on thinning and embedding of commercially available silicon wafers in the metamaterial structure. The resulting membrane thickness of less than 25 εm allows for quasi etalon-effect free devices which can be designed to show impedance matching to the surrounding air. We fabricated a thin film spectral bandpass filter with a maximal transmission of 85% and a modulation depth upon optical tuning of 98% at an operating frequency of 0.65THz. Further, we discussed the charge carrier dynamics and the requirements for optical tuning.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin terahertz-wave phase shifter by flexible film metamaterial with high transmission

Zhengli Han, Seigo Ohno, Yu Tokizane, Kouji Nawata, Takashi Notake, Yuma Takida, and Hiroaki Minamide
Opt. Express 25(25) 31186-31196 (2017)

Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber

Xu Chen and Wenhui Fan
Appl. Opt. 54(9) 2376-2382 (2015)

Optically thin terahertz metamaterials

Ranjan Singh, Evgenya Smirnova, Antoinette J. Taylor, John F. O’Hara, and Weili Zhang
Opt. Express 16(9) 6537-6543 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Sihvola, “Metamaterials in Electromagnetics,” Metamaterials,  1(1), 2–11 (2007).
    [Crossref]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
  3. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
  4. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
    [Crossref] [PubMed]
  5. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, ”Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
    [Crossref]
  6. J. Neu, R. Beigang, and M. Rahm, “Metamaterial-based gradient index beam steerers for terahertz radiation,” Appl. Phys. Lett. 103, 041109 (2013).
  7. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
    [Crossref]
  8. E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
    [Crossref]
  9. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
    [Crossref] [PubMed]
  10. A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
    [Crossref]
  11. N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
    [Crossref]
  12. D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
    [Crossref]
  13. S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
    [Crossref]
  14. Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
    [Crossref]
  15. M. Born and E. Wolf, Principels of Optics (Pergamon Press, 1980).
  16. D. Schroder, “Carrier lifetimes in silicon,” IEEE Trans. Electron Devices 44, (1)160–170 (1997).
    [Crossref]
  17. E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,” Phys. Rev. Lett 57, 249–252 (1986).
  18. D. Schroder and P. Rai-Choudhury, “Silicononsapphire with microsecond carrier lifetimes,” Appl. Phys. Lett. 22, 455–457 (1973).
  19. F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).
  20. P. Würfel, Physics of Solar Cells: From Principles to New Concepts (John Wiley & Sons, 2005).
    [Crossref]
  21. D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, and G. Hahn, “Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging,” J. Appl. Phys.110, 054508 (2011).
  22. J. A. Giesecke, M. C. Schubert, D. Walter, and W. Warta, “Minority carrier lifetime in silicon wafers from quasi-steady-state photoluminescence,” Appl. Phys. Lett. 97, 092109 (2010).
  23. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
    [Crossref] [PubMed]
  24. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” JES 137, 3612–3626 (1990).
  25. R. Hull, Properties of Crystalline Silicon (Institution of Electrical Engineers, 1999).
  26. M. Yun, “Investigation of KOH Anisotropic Etching for the Fabrication of Sharp Tips in Silicon-on-Insulator (SOI) Material,” JKPS 37, 605–610 (2000).
  27. I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuators A 93, 138–147 (2001).
    [Crossref]
  28. K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
    [Crossref]
  29. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  30. M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
    [Crossref]

2013 (2)

J. Neu, R. Beigang, and M. Rahm, “Metamaterial-based gradient index beam steerers for terahertz radiation,” Appl. Phys. Lett. 103, 041109 (2013).

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

2012 (1)

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

2011 (5)

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

2010 (3)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[Crossref] [PubMed]

J. A. Giesecke, M. C. Schubert, D. Walter, and W. Warta, “Minority carrier lifetime in silicon wafers from quasi-steady-state photoluminescence,” Appl. Phys. Lett. 97, 092109 (2010).

J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, ”Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
[Crossref]

2009 (1)

2008 (2)

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

2007 (1)

A. Sihvola, “Metamaterials in Electromagnetics,” Metamaterials,  1(1), 2–11 (2007).
[Crossref]

2001 (1)

I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuators A 93, 138–147 (2001).
[Crossref]

2000 (1)

M. Yun, “Investigation of KOH Anisotropic Etching for the Fabrication of Sharp Tips in Silicon-on-Insulator (SOI) Material,” JKPS 37, 605–610 (2000).

1998 (1)

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).

1997 (1)

D. Schroder, “Carrier lifetimes in silicon,” IEEE Trans. Electron Devices 44, (1)160–170 (1997).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

1990 (3)

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” JES 137, 3612–3626 (1990).

M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[Crossref]

1987 (1)

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).

1986 (1)

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,” Phys. Rev. Lett 57, 249–252 (1986).

1973 (1)

D. Schroder and P. Rai-Choudhury, “Silicononsapphire with microsecond carrier lifetimes,” Appl. Phys. Lett. 22, 455–457 (1973).

Allara, D. L.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,” Phys. Rev. Lett 57, 249–252 (1986).

Averitt, R. D.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

Azad, A. K.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

Baumgärtel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” JES 137, 3612–3626 (1990).

Beigang, R.

Boardman, A.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Born, M.

M. Born and E. Wolf, Principels of Optics (Pergamon Press, 1980).

Bright, T. B.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,” Phys. Rev. Lett 57, 249–252 (1986).

Chang, C. C.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,” Phys. Rev. Lett 57, 249–252 (1986).

Chen, H.-T.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

Chi, C. C.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).

Chowdhury, D. R.

D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Csepregi, L.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” JES 137, 3612–3626 (1990).

Doany, F. E.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).

Ekmekci, E.

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

Fan, K.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

Fattinger, C.

Forchel, A.

Geng, K.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Giesecke, J. A.

J. A. Giesecke, M. C. Schubert, D. Walter, and W. Warta, “Minority carrier lifetime in silicon wafers from quasi-steady-state photoluminescence,” Appl. Phys. Lett. 97, 092109 (2010).

Gmitter, T.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,” Phys. Rev. Lett 57, 249–252 (1986).

Gokkavas, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

Grimalsky, V.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Grischkowsky, D.

M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[Crossref]

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).

Hahn, G.

D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, and G. Hahn, “Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging,” J. Appl. Phys.110, 054508 (2011).

Heinrich, J.

Herguth, A.

D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, and G. Hahn, “Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging,” J. Appl. Phys.110, 054508 (2011).

Heuberger, A.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” JES 137, 3612–3626 (1990).

Höfling, S.

Holden, A. J.

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

Hull, R.

R. Hull, Properties of Crystalline Silicon (Institution of Electrical Engineers, 1999).

Imhof, C.

Kafesaki, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

Keiding, S.

Keiser, G.

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

Keiser, G. R.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Kiliani, D.

D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, and G. Hahn, “Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging,” J. Appl. Phys.110, 054508 (2011).

Kivshar, Y.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Koschny, T.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

Koshevaya, S.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Kramkowska, M.

I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuators A 93, 138–147 (2001).
[Crossref]

Krolla, B.

Lägel, B.

Lapine, M.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Li, L.

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

Litchinitser, N.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Liu, J.

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

Malnev, V.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Manceau, J.-M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

Massaouti, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

Metcalfe, G.D.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Micard, G.

D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, and G. Hahn, “Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging,” J. Appl. Phys.110, 054508 (2011).

Nam, S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

Neu, J.

J. Neu, R. Beigang, and M. Rahm, “Metamaterial-based gradient index beam steerers for terahertz radiation,” Appl. Phys. Lett. 103, 041109 (2013).

J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, ”Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
[Crossref]

Noginov, M.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

OHara, J. F.

D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Ozbay, E.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

Park, Y.-S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

Paul, O.

Pendry, B.

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

Raabe, B.

D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, and G. Hahn, “Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging,” J. Appl. Phys.110, 054508 (2011).

Rahm, M.

Rai-Choudhury, P.

D. Schroder and P. Rai-Choudhury, “Silicononsapphire with microsecond carrier lifetimes,” Appl. Phys. Lett. 22, 455–457 (1973).

Rapoport, Y.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Reinhard, B.

Rho, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

Robbins, D. J.

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).

Schroder, D.

D. Schroder, “Carrier lifetimes in silicon,” IEEE Trans. Electron Devices 44, (1)160–170 (1997).
[Crossref]

D. Schroder and P. Rai-Choudhury, “Silicononsapphire with microsecond carrier lifetimes,” Appl. Phys. Lett. 22, 455–457 (1973).

Schubert, M. C.

J. A. Giesecke, M. C. Schubert, D. Walter, and W. Warta, “Minority carrier lifetime in silicon wafers from quasi-steady-state photoluminescence,” Appl. Phys. Lett. 97, 092109 (2010).

Seidel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” JES 137, 3612–3626 (1990).

Seren, H. R.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Shalaev, V.

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Shen, N.-H.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

Shi, Y.

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

Sihvola, A.

A. Sihvola, “Metamaterials in Electromagnetics,” Metamaterials,  1(1), 2–11 (2007).
[Crossref]

Singh, R.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Soukoulis, C. M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

Steuer, B.

D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, and G. Hahn, “Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging,” J. Appl. Phys.110, 054508 (2011).

Stewart, W. J.

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

Strikwerda, A. C.

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

Sun, H.

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

Taylor, A. J.

D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

Taylor, A.J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

Turhan-Sayan, G.

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

Tzortzakis, S.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

van Exter, M.

M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[Crossref]

Walter, D.

J. A. Giesecke, M. C. Schubert, D. Walter, and W. Warta, “Minority carrier lifetime in silicon wafers from quasi-steady-state photoluminescence,” Appl. Phys. Lett. 97, 092109 (2010).

Wang, A.

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

Warta, W.

J. A. Giesecke, M. C. Schubert, D. Walter, and W. Warta, “Minority carrier lifetime in silicon wafers from quasi-steady-state photoluminescence,” Appl. Phys. Lett. 97, 092109 (2010).

Wolf, E.

M. Born and E. Wolf, Principels of Optics (Pergamon Press, 1980).

Wolff, S.

Wraback, M.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Würfel, P.

P. Würfel, Physics of Solar Cells: From Principles to New Concepts (John Wiley & Sons, 2005).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,” Phys. Rev. Lett 57, 249–252 (1986).

Yin, X.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

Yun, M.

M. Yun, “Investigation of KOH Anisotropic Etching for the Fabrication of Sharp Tips in Silicon-on-Insulator (SOI) Material,” JKPS 37, 605–610 (2000).

Zengerle, R.

Zhang, C.

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

Zhang, J.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Zhang, S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

Zhang, X.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

Zhao, D.

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

Zhao, X.

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

Zheludev, N. I.

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[Crossref] [PubMed]

Zhou, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

Zhou, Q.

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

Zubel, I.

I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuators A 93, 138–147 (2001).
[Crossref]

Appl. Phys. Lett. (5)

J. Neu, R. Beigang, and M. Rahm, “Metamaterial-based gradient index beam steerers for terahertz radiation,” Appl. Phys. Lett. 103, 041109 (2013).

D. R. Chowdhury, R. Singh, J. F. OHara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

D. Schroder and P. Rai-Choudhury, “Silicononsapphire with microsecond carrier lifetimes,” Appl. Phys. Lett. 22, 455–457 (1973).

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).

J. A. Giesecke, M. C. Schubert, D. Walter, and W. Warta, “Minority carrier lifetime in silicon wafers from quasi-steady-state photoluminescence,” Appl. Phys. Lett. 97, 092109 (2010).

IEEE Trans. Electron Devices (1)

D. Schroder, “Carrier lifetimes in silicon,” IEEE Trans. Electron Devices 44, (1)160–170 (1997).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G.D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates,” IEEE Trans. Terahertz Sci. Technol. 3, 702–708 (2013).
[Crossref]

J. Opt (1)

Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, and C. Zhang, “Ultrafast optical modulation of terahertz metamaterials,” J. Opt 13, 125102 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).

JES (1)

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” JES 137, 3612–3626 (1990).

JKPS (1)

M. Yun, “Investigation of KOH Anisotropic Etching for the Fabrication of Sharp Tips in Silicon-on-Insulator (SOI) Material,” JKPS 37, 605–610 (2000).

Laser & Photonics Rev (1)

A. Boardman, V. Grimalsky, Y. Kivshar, S. Koshevaya, M. Lapine, N. Litchinitser, V. Malnev, M. Noginov, Y. Rapoport, and V. Shalaev, “Active and tunable metamaterials,”, Laser & Photonics Rev 5, 287–307 (2011)
[Crossref]

Metamaterials (1)

A. Sihvola, “Metamaterials in Electromagnetics,” Metamaterials,  1(1), 2–11 (2007).
[Crossref]

Nature Communications (1)

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A.J. Taylor, and X. Zhang, “Active control of electromagnetically induced transparency analoguein terahertz metamaterials,” Nature Communications 3, 942 (2012).
[Crossref]

Nature Photonics (1)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics 2, 295–298 (2008).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
[Crossref]

Phys. Rev. C (1)

E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, “Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators,” Phys. Rev. C 83, 193103 (2011).
[Crossref]

Phys. Rev. Lett (2)

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, ”Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett 106, 037403 (2011).
[Crossref]

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,” Phys. Rev. Lett 57, 249–252 (1986).

Phys. Rev. Lett. (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

Science (1)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[Crossref] [PubMed]

Sens. Actuators A (1)

I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sens. Actuators A 93, 138–147 (2001).
[Crossref]

Other (4)

R. Hull, Properties of Crystalline Silicon (Institution of Electrical Engineers, 1999).

P. Würfel, Physics of Solar Cells: From Principles to New Concepts (John Wiley & Sons, 2005).
[Crossref]

D. Kiliani, G. Micard, B. Steuer, B. Raabe, A. Herguth, and G. Hahn, “Minority charge carrier lifetime mapping of crystalline silicon wafers by time-resolved photoluminescence imaging,” J. Appl. Phys.110, 054508 (2011).

M. Born and E. Wolf, Principels of Optics (Pergamon Press, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic of a thin-film optically tunable metamaterial bandpass filter, (b) Optical microscope image of the unit cell with the dimensions: a = 25εm, b = 19εm, c = 61εm, d = 54εm, unit cell size 78εm
Fig. 2
Fig. 2 a) Measured amplitude transmission spectra of the band-pass filter for different photoexcitation energies at 800nm and frep = 1kHz. The layer system of the filter was BCB/Si/Cu/BCB with thicknesses 10εm/4εm/0.2εm/10εm. b) Corresponding numerical calculation of the amplitude transmission spectra of the filter.
Fig. 3
Fig. 3 a) Measured amplitude transmission spectra through the band-pass filter for different photoexcitation energies at 780nm and frep = 80MHz. The layer system of the filter was BCB/Si/Cu/BCB with thicknesses 10εm/4εm/0.2εm/10εm. b) Corresponding numerical calculation of the amplitude transmission spectra of the filter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( t ) = Δ n 0 k e ( t k t rep ) / τ r Θ ( t k t rep )
ε ( ω ) = ε ω p 2 ω ( ω i Γ )

Metrics