Abstract

Zinc oxide (ZnO) demonstrates promising applications in photocatalysis, photodetectors and light-emitting devices. The shape of the ZnO nanoparticles plays an important role in determining their mechanical and optical properties. Here we report facile and controllable synthesis of ZnO nanowires and nanosheets with hydrothermal synthesis on patterned aluminum substrates prepared by colloidal lithography. The nanowire areas and nanosheet areas were well-defined in micron scale and they displayed dramatically different photoluminescence properties: while nanowires showed strong band-edge emission at 382 nm with a moderate orange emission at 600 nm, nanosheets only showed broad and intense green emission in the 547 nm range. The method demonstrated here enables periodic ZnO nanowire/nanosheet patterning with well-controlled morphology and luminescence property, which would provide a large-scale facile fabrication technique to tailor the substrate’s optical properties by using ZnO as the only constituent oxide component.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
K doping effect on structural and optical properties of ZnO nanorods grown on semipolar (112-2) GaN films using a hydrothermal growth method

Soohwan Jang, Pyunghee Son, Jimin Kim, Sung-Nam Lee, and Kwang Hyeon Baik
Opt. Mater. Express 5(7) 1621-1627 (2015)

Silicon micro-structure and ZnO nanowire hierarchical assortments for light management

B. Dev Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand
Opt. Mater. Express 3(8) 1039-1048 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
    [Crossref]
  2. L. T. Singh, R. P. Sugavaneshwar, and K. K. Nanda, “Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices,” AIP Advances 3(8), 082106 (2013).
    [Crossref]
  3. S. L. Shinde and K. K. Nanda, “Wide-Range Temperature Sensing using Highly Sensitive Green-Luminescent ZnO and PMMA-ZnO Film as a Non-Contact Optical Probe,” Angew. Chem. Int. Ed. Engl. 52(43), 11325–11328 (2013).
    [Crossref] [PubMed]
  4. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
    [Crossref]
  5. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
    [Crossref]
  6. M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, “Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells,” J. Phys. Chem. C 117(26), 13396–13402 (2013).
    [Crossref]
  7. Y. L. Chen, L.-C. Kuo, M. L. Tseng, H. M. Chen, C.-K. Chen, H. J. Huang, R.-S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
    [Crossref] [PubMed]
  8. H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
    [Crossref] [PubMed]
  9. K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
    [Crossref] [PubMed]
  10. Z. L. Wang and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 312(5771), 242–246 (2006).
    [Crossref] [PubMed]
  11. C. W. Chen, S. C. Hung, C. H. Lee, C. J. Tun, C. H. Kuo, M. D. Yang, C. W. Yeh, C. H. Wu, and G. C. Chi, “Nonpolar light emitting diode made by m-plane n-ZnO/p-GaN heterostructure,” Opt. Mater. Express 1(8), 1555–1560 (2011).
    [Crossref]
  12. H.-Y. Shih, S.-H. Cheng, J.-K. Lian, T.-Y. Lin, and Y.-F. Chen, “Light-emitting devices with tunable color from ZnO nanorods grown on InGaN/GaN multiple quantum wells,” Opt. Express 20(S2Suppl 2), A270–A277 (2012).
    [Crossref] [PubMed]
  13. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
    [Crossref] [PubMed]
  14. S. Xu and Z. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
    [Crossref]
  15. N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
    [Crossref]
  16. L. Hongjun, Z. Zang, and X. Tang, “Synthesis mechanism and optical properties of well nanoflower-shaped ZnO fabricated by a facile method,” Opt. Mater. Express 4(9), 1762–1769 (2014).
    [Crossref]
  17. S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001 (2009).
    [Crossref]
  18. Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
    [Crossref] [PubMed]
  19. B. D. Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand, “Silicon micro-structure and ZnO nanowire hierarchical assortments for light management,” Opt. Mater. Express 3(8), 1039–1048 (2013).
    [Crossref]
  20. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
    [Crossref] [PubMed]
  21. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [Crossref]
  22. K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted meniscus convective self-assembly,” J. Colloid Interface Sci. 344(2), 315–320 (2010).
    [Crossref] [PubMed]
  23. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
    [Crossref] [PubMed]
  24. X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett. 4(3), 423–426 (2004).
    [Crossref] [PubMed]
  25. D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
    [Crossref] [PubMed]
  26. C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, “Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater. 21(5), 891–897 (2009).
    [Crossref]
  27. D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
    [Crossref]
  28. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
    [Crossref] [PubMed]
  29. A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
    [Crossref]
  30. A. Janotti and C. G. V. Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
    [Crossref]
  31. A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
    [Crossref]
  32. M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
    [Crossref]
  33. F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
    [Crossref] [PubMed]

2014 (2)

L. Hongjun, Z. Zang, and X. Tang, “Synthesis mechanism and optical properties of well nanoflower-shaped ZnO fabricated by a facile method,” Opt. Mater. Express 4(9), 1762–1769 (2014).
[Crossref]

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

2013 (8)

B. D. Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand, “Silicon micro-structure and ZnO nanowire hierarchical assortments for light management,” Opt. Mater. Express 3(8), 1039–1048 (2013).
[Crossref]

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

L. T. Singh, R. P. Sugavaneshwar, and K. K. Nanda, “Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices,” AIP Advances 3(8), 082106 (2013).
[Crossref]

S. L. Shinde and K. K. Nanda, “Wide-Range Temperature Sensing using Highly Sensitive Green-Luminescent ZnO and PMMA-ZnO Film as a Non-Contact Optical Probe,” Angew. Chem. Int. Ed. Engl. 52(43), 11325–11328 (2013).
[Crossref] [PubMed]

M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, “Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells,” J. Phys. Chem. C 117(26), 13396–13402 (2013).
[Crossref]

Y. L. Chen, L.-C. Kuo, M. L. Tseng, H. M. Chen, C.-K. Chen, H. J. Huang, R.-S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
[Crossref] [PubMed]

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

2010 (2)

K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted meniscus convective self-assembly,” J. Colloid Interface Sci. 344(2), 315–320 (2010).
[Crossref] [PubMed]

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

2009 (4)

A. Janotti and C. G. V. Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, “Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater. 21(5), 891–897 (2009).
[Crossref]

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001 (2009).
[Crossref]

2008 (1)

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

2007 (3)

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

2006 (5)

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Z. L. Wang and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

2005 (1)

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

2004 (2)

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett. 4(3), 423–426 (2004).
[Crossref] [PubMed]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Abedin, A.

Ahn, M.-W.

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

Anand, S.

Bangerter, J.

K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted meniscus convective self-assembly,” J. Colloid Interface Sci. 344(2), 315–320 (2010).
[Crossref] [PubMed]

Bano, N.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Baruah, S.

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001 (2009).
[Crossref]

Beling, C. D.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Black, C. T.

M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, “Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells,” J. Phys. Chem. C 117(26), 13396–13402 (2013).
[Crossref]

Calestani, D.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Calestani, G.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Calzolari, A.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Catellani, A.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Chan, T. S.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Chan, W. K.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Chang, C. M.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Cheah, K. W.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Chen, C. K.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Chen, C. W.

Chen, C.-K.

Chen, H. M.

Y. L. Chen, L.-C. Kuo, M. L. Tseng, H. M. Chen, C.-K. Chen, H. J. Huang, R.-S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
[Crossref] [PubMed]

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Chen, K.

K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted meniscus convective self-assembly,” J. Colloid Interface Sci. 344(2), 315–320 (2010).
[Crossref] [PubMed]

Chen, Y. L.

Chen, Y.-F.

Cheng, L.-C.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Cheng, S.-H.

Cheung, C. K.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Chi, G. C.

Choi, K. J.

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

Choudhury, B. D.

Cicero, G.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Dang, C. T. T.

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

Dao, T. D.

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

Dev, A.

Dierre, B.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Ding, L.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Djurisic, A. B.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Djurišic, A. B.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Dong, L.

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Dutta, J.

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001 (2009).
[Crossref]

Fabbri, F.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Fan, X.

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Fu, L.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Fung, S.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Ge, W. K.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Giersig, M.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Giessen, H.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Goldberger, J.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Greene, L. E.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Gwinner, M. C.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Han, G.

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Heo, J.-H.

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

Hoang, C. V.

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

Hong, G.

C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, “Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater. 21(5), 891–897 (2009).
[Crossref]

Hong, S.-H.

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

Hongjun, L.

Hsu, Y. F.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Huang, D.-W.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Huang, H.

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

Huang, H. J.

Huang, H. W.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Hung, S. C.

Hussain, I.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Janotti, A.

A. Janotti and C. G. V. Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Jun, H.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

Kamcev, J.

M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, “Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells,” J. Phys. Chem. C 117(26), 13396–13402 (2013).
[Crossref]

Kandulski, W.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Kim, D.-W.

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

Kim, K.-H.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

Kim, S.-W.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

Ko, Y. H.

Koroknay, E.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Kumar, B.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

Kuo, C. H.

Kuo, L.-C.

Kwok, W. M.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Law, M.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Lee, C. H.

Lee, D.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

Lee, H. H.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

Lee, J.-H.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

Lee, K. Y.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

Lee, Y. C.

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

Leung, Y. H.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Li, C.

C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, “Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater. 21(5), 891–897 (2009).
[Crossref]

Li, D.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Li, J.

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

Li, X.

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

Lian, J.-K.

Lin, C.

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

Lin, H.

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

Lin, T.-Y.

Ling, C. C.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Liu, D. F.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Liu, L. F.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Liu, M.

M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, “Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells,” J. Phys. Chem. C 117(26), 13396–13402 (2013).
[Crossref]

Liu, R.-S.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Y. L. Chen, L.-C. Kuo, M. L. Tseng, H. M. Chen, C.-K. Chen, H. J. Huang, R.-S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Liu, Z. T.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Lu, Y.

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Luo, S. D.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Ma, W. J.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Montano, M.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Nagao, T.

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

Nam, C.-Y.

M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, “Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells,” J. Phys. Chem. C 117(26), 13396–13402 (2013).
[Crossref]

Nanda, K. K.

L. T. Singh, R. P. Sugavaneshwar, and K. K. Nanda, “Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices,” AIP Advances 3(8), 082106 (2013).
[Crossref]

S. L. Shinde and K. K. Nanda, “Wide-Range Temperature Sensing using Highly Sensitive Green-Luminescent ZnO and PMMA-ZnO Film as a Non-Contact Optical Probe,” Angew. Chem. Int. Ed. Engl. 52(43), 11325–11328 (2013).
[Crossref] [PubMed]

Narayanamurti, V.

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

Nur, O.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Park, H.-K.

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

Park, J.-G.

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

Park, K.-S.

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

Patoka, P.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Phillips, D. L.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Qadir, M. I.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Qi, L.

C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, “Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater. 21(5), 891–897 (2009).
[Crossref]

Robinson, H. D.

K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted meniscus convective self-assembly,” J. Colloid Interface Sci. 344(2), 315–320 (2010).
[Crossref] [PubMed]

Sadaf, J. R.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Salviati, G.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Sanatinia, R.

Sekiguchi, T.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Shen, D.

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Shen, J.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Shi, S. L.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Shih, H.-Y.

Shinde, S. L.

S. L. Shinde and K. K. Nanda, “Wide-Range Temperature Sensing using Highly Sensitive Green-Luminescent ZnO and PMMA-ZnO Film as a Non-Contact Optical Probe,” Angew. Chem. Int. Ed. Engl. 52(43), 11325–11328 (2013).
[Crossref] [PubMed]

Singh, L. T.

L. T. Singh, R. P. Sugavaneshwar, and K. K. Nanda, “Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices,” AIP Advances 3(8), 082106 (2013).
[Crossref]

Somorjai, G.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Song, J.

Z. L. Wang and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Song, L.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Stoianov, S. V.

K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted meniscus convective self-assembly,” J. Colloid Interface Sci. 344(2), 315–320 (2010).
[Crossref] [PubMed]

Sugavaneshwar, R. P.

L. T. Singh, R. P. Sugavaneshwar, and K. K. Nanda, “Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices,” AIP Advances 3(8), 082106 (2013).
[Crossref]

Summers, C. J.

X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett. 4(3), 423–426 (2004).
[Crossref] [PubMed]

Sun, X. W.

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

Tam, H. L.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Tam, K. H.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Tan, D. H.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Tan, O. K.

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

Tang, X.

Tong, Y.

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Tsai, D. P.

Y. L. Chen, L.-C. Kuo, M. L. Tseng, H. M. Chen, C.-K. Chen, H. J. Huang, R.-S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
[Crossref] [PubMed]

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Tseng, M. L.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Y. L. Chen, L.-C. Kuo, M. L. Tseng, H. M. Chen, C.-K. Chen, H. J. Huang, R.-S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
[Crossref] [PubMed]

Tun, C. J.

Van de Walle, C. G.

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Vayssieres, L.

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

Villani, M.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Walle, C. G. V.

A. Janotti and C. G. V. Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

Wang, C. Y.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Wang, G.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Wang, J. X.

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

Wang, N.

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

Wang, P.

C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, “Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater. 21(5), 891–897 (2009).
[Crossref]

Wang, X.

X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett. 4(3), 423–426 (2004).
[Crossref] [PubMed]

Wang, Z.

S. Xu and Z. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Wang, Z. L.

Z. L. Wang and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett. 4(3), 423–426 (2004).
[Crossref] [PubMed]

Willander, M.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Wong, K. S.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Wu, C. H.

Wu, J.

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

Wu, P. C.

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

Wu, X. C.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Xiang, Y. J.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Xie, M. H.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Xie, S. S.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Xu, S.

S. Xu and Z. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Xu, S. J.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Yang, M. D.

Yang, P.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Yang, Y.

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

Yeh, C. W.

Yi, W.

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

Yu, D.

C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, “Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater. 21(5), 891–897 (2009).
[Crossref]

Yu, J. S.

Zainelabdin, A.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Zaman, S.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Zang, Z.

Zappettini, A.

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Zhang, J.

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Zhang, L.

M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, “Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells,” J. Phys. Chem. C 117(26), 13396–13402 (2013).
[Crossref]

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

Zhang, Z. X.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Zhao, D.

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

Zhao, X. W.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Zhong, Y. C.

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

Zhou, W. Y.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

AIP Advances (1)

L. T. Singh, R. P. Sugavaneshwar, and K. K. Nanda, “Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices,” AIP Advances 3(8), 082106 (2013).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

S. L. Shinde and K. K. Nanda, “Wide-Range Temperature Sensing using Highly Sensitive Green-Luminescent ZnO and PMMA-ZnO Film as a Non-Contact Optical Probe,” Angew. Chem. Int. Ed. Engl. 52(43), 11325–11328 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Appl. Phys. Lett. 93(26), 263103 (2008).
[Crossref]

T. D. Dao, C. T. T. Dang, G. Han, C. V. Hoang, W. Yi, V. Narayanamurti, and T. Nagao, “Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector,” Appl. Phys. Lett. 103(19), 193119 (2013).
[Crossref]

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Chem. Mater. (1)

C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, “Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater. 21(5), 891–897 (2009).
[Crossref]

J. Am. Ceram. Soc. (1)

N. Wang, H. Lin, J. Li, L. Zhang, X. Li, J. Wu, and C. Lin, “Strong Orange Luminescence from a Novel Hexagonal ZnO Nanosheet Film Grown on Aluminum Substrate by a Simple Wet-Chemical Approach,” J. Am. Ceram. Soc. 90(2), 635–637 (2007).
[Crossref]

J. Colloid Interface Sci. (1)

K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted meniscus convective self-assembly,” J. Colloid Interface Sci. 344(2), 315–320 (2010).
[Crossref] [PubMed]

J. Phys. Chem. B (3)

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, and X. Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique,” J. Phys. Chem. B 110(41), 20263–20267 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

M. Liu, C.-Y. Nam, C. T. Black, J. Kamcev, and L. Zhang, “Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells,” J. Phys. Chem. C 117(26), 13396–13402 (2013).
[Crossref]

Materials (1)

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices,” Materials 3(4), 2643–2667 (2010).
[Crossref]

Nano Lett. (3)

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

X. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett. 4(3), 423–426 (2004).
[Crossref] [PubMed]

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers,” Nano Lett. 6(10), 2375–2378 (2006).
[Crossref] [PubMed]

Nano Res. (1)

S. Xu and Z. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[Crossref]

Nanotechnology (2)

A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology 18(9), 095702 (2007).
[Crossref]

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology 17(19), 4995–4998 (2006).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (3)

Phys. Rev. B (1)

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Rep. Prog. Phys. (1)

A. Janotti and C. G. V. Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

Sci Rep (2)

K.-H. Kim, B. Kumar, K. Y. Lee, H.-K. Park, J.-H. Lee, H. H. Lee, H. Jun, D. Lee, and S.-W. Kim, “Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation,” Sci Rep 3, 2017 (2013).
[Crossref] [PubMed]

F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Sci Rep 4, 5158 (2014).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001 (2009).
[Crossref]

Science (1)

Z. L. Wang and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Small (2)

H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L.-C. Cheng, H. W. Huang, T. S. Chan, D.-W. Huang, R.-S. Liu, and D. P. Tsai, “Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes,” Small 9(17), 2926–2936 (2013).
[Crossref] [PubMed]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of ZnO nanowire/nanosheet synthesis. (a) ZnO seeds were formed on the substrate. (b) A monolayer of PS sphere was deposited on top of the ZnO seeds. The size of the sphere can be adjusted with dry etching. (c) Al nanohole arrays were fabricated using the PS spheres as masks. (d) Patterned ZnO nanowires/nanosheets were grown from the same growth solution.
Fig. 2
Fig. 2 SEM image of the boundary between the ZnO nanowire area (bottom-left) and nanosheet area (top-right). The scale bar is 5µm in length. Inset: magnified SEM images of nanowires (bottom-left) and nanosheets (top-right). The scale bar in either inset is 200 nm.
Fig. 3
Fig. 3 (a) Representative PL spectra of ZnO nanowires (black) and nanosheets (red). Band-edge emission at 382 nm is only observed from the ZnO nanowires. (b) The variation of the PL intensity of the 382 nm peak (black, left axis) and 547 nm peak (red, right axis) along a line-scan across the nanowire/nanosheet boundary. The nanowires are located on the line below −7 μm while the nanosheets above −7 μm.
Fig. 4
Fig. 4 SEM images of controllable periodic pattern of ZnO nanowires/nanosheets. The Al nanohole size is decreasing from panel a to panel f. For smaller hole size (panel d-f), ZnO nanowires are prevented from growing and ZnO nanosheets prevail. The scale bars in all panels are 2μm in length.
Fig. 5
Fig. 5 (a) Optical image of ZnO nanowire/nanosheet substrate. (b) Corresponding PL mapping of the marked region in (a). The band-edge emission 382 nm is selected for imaging. The PL map shows good agreement with the optical image in the marked region. The scale bar in (a) is 2 μm.
Fig. 6
Fig. 6 SEM image of ZnO nanowire/nanosheet pattern (a) and the corresponding Zn (b) and O (c) distribution map obtained with EDS. The scale bars in all panels are 4 μm.
Fig. 7
Fig. 7 High resolution TEM images of ZnO (a) nanowire and (b) nanosheet.

Metrics