Abstract

Dispersion plasmonic interaction at an interface between a doped semiconductor and a dielectric is employed to use experimental data for determining the plasma frequency, the relaxation time, the effective mass, and the mobility of free electrons in heavily donor-doped gallium arsenide (GaAs) and indium phosphide (InP). A new solution for a plasmonic resonance at a semiconductor/dielectric interface found recently is exploited advantageously when analyzing the experimental data. Two independent measurement methods were used, namely the infrared reflectivity and the Raman scattering. Results indicate a good agreement with known data while pointing to some inaccuracies reported, and suggest a new alternative and accurate means to determine these important semiconductor parameters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures

Richard Soref, Joshua Hendrickson, and Justin W. Cleary
Opt. Express 20(4) 3814-3824 (2012)

Mid-IR optical properties of silicon doped InP

M. E. Aryaee Panah, L. Han, K. Norrman, N. Pryds, A. Nadtochiy, A.E. Zhukov, A. V. Lavrinenko, and E. S. Semenova
Opt. Mater. Express 7(7) 2260-2271 (2017)

IR permittivities for silicides and doped silicon

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald
J. Opt. Soc. Am. B 27(4) 730-734 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces (Springer - Verlag, 1986).
  2. S. A. Maier, Plasmonics Fundamentals and Applications (Springer Science + Business Media LLC, 2007).
  3. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
    [Crossref]
  4. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [Crossref]
  5. M. Cada, The Institute of Photonic Sciences (ICFO), Mediterranean Technology Park, 3 Av. Carl Friedrich Gauss, 08860 Castelldefels - Barcelona, Spain (research report, 2008).
  6. T. Wijesinghe, M. Premaratne, and G. P. Agrawal, “Electrically pumped hybrid plasmonic waveguide,” Opt. Express 22(3), 2681–2694 (2014).
    [Crossref] [PubMed]
  7. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
    [Crossref]
  8. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594–14603 (2011).
    [PubMed]
  9. M. Cada and J. Pistora, “Optical plasmons in semiconductors,” in Proceedings of 13th International Symposium on Microwave and Optical Technology ISMOT 2011, Prague, Czech Republic, 20–23 June 2011.
  10. J. Yuan, B. Chen, and A. L. Holmes., “Improved quantum efficiency of InGaAs/InP photodetectors using Ti/Au-SiO2 phase-matched-layer reflector,” Electron. Lett. 48(19), 1230–1232 (2012).
    [Crossref]
  11. I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
    [Crossref]
  12. B. Chen and A. L. Holmes., “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
    [Crossref]
  13. P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Material Properties (Springer, 2010).
  14. W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
    [Crossref]
  15. C. Hamaguchi, Basic Semiconductor Physics (Springer-Verlag, 2010).
  16. M. Fox, Optical Properties of Solids, (Oxford University Press, 2012).
  17. C. J. Johnson, G. H. Sherman, and R. Weil, “Far infrared measurement of the dielectric properties of GaAs and CdTe at 300K and 8K,” Appl. Opt. 8(8), 1667–1671 (1969).
    [Crossref] [PubMed]
  18. M. B. Kagan, M. M. Koltun, and A. P. Landsman, “Investigation of the reflectivity of highly doped gallium arsenide in a wide spectral range,” J. Appl. Spectrosc. 5(6), 548–550 (1966).
    [Crossref]
  19. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  21. M. Miyao, T. Motooka, N. Tatsuaki, and T. Tokuyama, “Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37(7), 605–608 (1981).
    [Crossref]
  22. D. M. Szmyd, P. Porro, A. Majerfeld, and S. Lagomarsino, “Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass,” J. Appl. Phys. 68(5), 2367–2375 (1990).
    [Crossref]
  23. D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
    [Crossref]

2014 (1)

2013 (1)

B. Chen and A. L. Holmes., “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

2012 (1)

J. Yuan, B. Chen, and A. L. Holmes., “Improved quantum efficiency of InGaAs/InP photodetectors using Ti/Au-SiO2 phase-matched-layer reflector,” Electron. Lett. 48(19), 1230–1232 (2012).
[Crossref]

2011 (1)

2010 (2)

2008 (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

2002 (2)

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[Crossref]

W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
[Crossref]

1994 (1)

D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
[Crossref]

1990 (1)

D. M. Szmyd, P. Porro, A. Majerfeld, and S. Lagomarsino, “Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass,” J. Appl. Phys. 68(5), 2367–2375 (1990).
[Crossref]

1981 (1)

M. Miyao, T. Motooka, N. Tatsuaki, and T. Tokuyama, “Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37(7), 605–608 (1981).
[Crossref]

1969 (1)

1966 (1)

M. B. Kagan, M. M. Koltun, and A. P. Landsman, “Investigation of the reflectivity of highly doped gallium arsenide in a wide spectral range,” J. Appl. Spectrosc. 5(6), 548–550 (1966).
[Crossref]

Agrawal, G. P.

Ahrenkiel, R. K.

W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
[Crossref]

Aytur, O.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[Crossref]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

Biyikli, N.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[Crossref]

Boreman, G. D.

Buchwald, W. R.

Butun, B.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[Crossref]

Carapella, J. J.

W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
[Crossref]

Chen, B.

B. Chen and A. L. Holmes., “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

J. Yuan, B. Chen, and A. L. Holmes., “Improved quantum efficiency of InGaAs/InP photodetectors using Ti/Au-SiO2 phase-matched-layer reflector,” Electron. Lett. 48(19), 1230–1232 (2012).
[Crossref]

Cleary, J. W.

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Drehman, A.

Gedvilas, L. M.

W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
[Crossref]

Grubert, H. U.

D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
[Crossref]

Hansen, K.

D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
[Crossref]

Holmes, A. L.

B. Chen and A. L. Holmes., “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

J. Yuan, B. Chen, and A. L. Holmes., “Improved quantum efficiency of InGaAs/InP photodetectors using Ti/Au-SiO2 phase-matched-layer reflector,” Electron. Lett. 48(19), 1230–1232 (2012).
[Crossref]

Ishigami, M.

Johnson, C. J.

Kagan, M. B.

M. B. Kagan, M. M. Koltun, and A. P. Landsman, “Investigation of the reflectivity of highly doped gallium arsenide in a wide spectral range,” J. Appl. Spectrosc. 5(6), 548–550 (1966).
[Crossref]

Kimukin, I.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[Crossref]

Koltun, M. M.

M. B. Kagan, M. M. Koltun, and A. P. Landsman, “Investigation of the reflectivity of highly doped gallium arsenide in a wide spectral range,” J. Appl. Spectrosc. 5(6), 548–550 (1966).
[Crossref]

Lagomarsino, S.

D. M. Szmyd, P. Porro, A. Majerfeld, and S. Lagomarsino, “Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass,” J. Appl. Phys. 68(5), 2367–2375 (1990).
[Crossref]

Landsman, A. P.

M. B. Kagan, M. M. Koltun, and A. P. Landsman, “Investigation of the reflectivity of highly doped gallium arsenide in a wide spectral range,” J. Appl. Spectrosc. 5(6), 548–550 (1966).
[Crossref]

Li, D.

Majerfeld, A.

D. M. Szmyd, P. Porro, A. Majerfeld, and S. Lagomarsino, “Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass,” J. Appl. Phys. 68(5), 2367–2375 (1990).
[Crossref]

Metzger, W. K.

W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
[Crossref]

Miyao, M.

M. Miyao, T. Motooka, N. Tatsuaki, and T. Tokuyama, “Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37(7), 605–608 (1981).
[Crossref]

Motooka, T.

M. Miyao, T. Motooka, N. Tatsuaki, and T. Tokuyama, “Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37(7), 605–608 (1981).
[Crossref]

Ning, C. Z.

Ozbay, E.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[Crossref]

Peale, R. E.

Plichta, A.

D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
[Crossref]

Porro, P.

D. M. Szmyd, P. Porro, A. Majerfeld, and S. Lagomarsino, “Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass,” J. Appl. Phys. 68(5), 2367–2375 (1990).
[Crossref]

Premaratne, M.

Rurup, D.

D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
[Crossref]

Schlachetzki, A.

D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
[Crossref]

Schneider, D.

D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
[Crossref]

Shelton, D. J.

Sherman, G. H.

Smith, C. W.

Soref, R.

Szmyd, D. M.

D. M. Szmyd, P. Porro, A. Majerfeld, and S. Lagomarsino, “Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass,” J. Appl. Phys. 68(5), 2367–2375 (1990).
[Crossref]

Tatsuaki, N.

M. Miyao, T. Motooka, N. Tatsuaki, and T. Tokuyama, “Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37(7), 605–608 (1981).
[Crossref]

Tokuyama, T.

M. Miyao, T. Motooka, N. Tatsuaki, and T. Tokuyama, “Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37(7), 605–608 (1981).
[Crossref]

Ünlü, S. M.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[Crossref]

Verley, J. C.

W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
[Crossref]

Wanlass, M. W.

W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
[Crossref]

Weil, R.

Wijesinghe, T.

Yuan, J.

J. Yuan, B. Chen, and A. L. Holmes., “Improved quantum efficiency of InGaAs/InP photodetectors using Ti/Au-SiO2 phase-matched-layer reflector,” Electron. Lett. 48(19), 1230–1232 (2012).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

J. Yuan, B. Chen, and A. L. Holmes., “Improved quantum efficiency of InGaAs/InP photodetectors using Ti/Au-SiO2 phase-matched-layer reflector,” Electron. Lett. 48(19), 1230–1232 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Ünlü, and E. Ozbay, “InGaAs-Based High-Performance p-i-n Photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[Crossref]

J. Appl. Phys. (2)

W. K. Metzger, M. W. Wanlass, L. M. Gedvilas, J. C. Verley, J. J. Carapella, and R. K. Ahrenkiel, “Effective electron mass and plasma filter characterization of n-type InGaAs and InAsP,” J. Appl. Phys. 92(7), 3524–3529 (2002).
[Crossref]

D. M. Szmyd, P. Porro, A. Majerfeld, and S. Lagomarsino, “Heavily doped GaAs:Se. I. Photoluminescence determination of the electron effective mass,” J. Appl. Phys. 68(5), 2367–2375 (1990).
[Crossref]

J. Appl. Spectrosc. (1)

M. B. Kagan, M. M. Koltun, and A. P. Landsman, “Investigation of the reflectivity of highly doped gallium arsenide in a wide spectral range,” J. Appl. Spectrosc. 5(6), 548–550 (1966).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

New J. Phys. (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10(10), 105010 (2008).
[Crossref]

Opt. Express (2)

Opt. Quantum Electron. (1)

B. Chen and A. L. Holmes., “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

Solid State Commun. (1)

M. Miyao, T. Motooka, N. Tatsuaki, and T. Tokuyama, “Change of the electron effective mass in extremely heavily doped n-type Si obtained by ion implantation and laser annealing,” Solid State Commun. 37(7), 605–608 (1981).
[Crossref]

Z. Phys. B. (1)

D. Schneider, D. Rurup, A. Plichta, H. U. Grubert, A. Schlachetzki, and K. Hansen, “Shubnikov-de Haas effect and effective mass in n-InP in dependence on carrier concentration,” Z. Phys. B. 95, 281–285 (1994).
[Crossref]

Other (9)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

M. Cada and J. Pistora, “Optical plasmons in semiconductors,” in Proceedings of 13th International Symposium on Microwave and Optical Technology ISMOT 2011, Prague, Czech Republic, 20–23 June 2011.

M. Cada, The Institute of Photonic Sciences (ICFO), Mediterranean Technology Park, 3 Av. Carl Friedrich Gauss, 08860 Castelldefels - Barcelona, Spain (research report, 2008).

P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Material Properties (Springer, 2010).

C. Hamaguchi, Basic Semiconductor Physics (Springer-Verlag, 2010).

M. Fox, Optical Properties of Solids, (Oxford University Press, 2012).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces (Springer - Verlag, 1986).

S. A. Maier, Plasmonics Fundamentals and Applications (Springer Science + Business Media LLC, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Dispersion of semiconductor/dielectric interface.

Fig. 2
Fig. 2

Reflectivity spectrum of a heavily doped n-type GaAs: red curve – GaAs/air interface, blue curve – GaAs/diamond interface.

Fig. 3
Fig. 3

Reflectivity spectrum of a heavily doped n-type InP: red curve – InP/air interface, blue curve – InP/diamond interface.

Fig. 4
Fig. 4

Modeled effect of air gap thickness on diamond/GaAs ATR reflectivity.

Fig. 5
Fig. 5

Modeled effect of air gap thickness on diamond/InP ATR reflectivity.

Fig. 6
Fig. 6

Raman scattering trace of a heavily doped n-type GaAs.

Fig. 7
Fig. 7

Raman scattering trace of a heavily doped n-type InP.

Fig. 8
Fig. 8

Refractive index dispersion of GaAs: blue curve – material refractive index, thin red line – measured plasma edge.

Fig. 9
Fig. 9

Refractive index dispersion of InP: blue curve – material refractive index, thin red line – measured plasma edge.

Fig. 10
Fig. 10

Raman shift versus concentration for a heavily doped n-type GaAs: green curve – upper branch of coupled plasmon–LO phonon, red line – plasma frequency, blue curve – lower branch of coupled plasmon–LO phonon, thin vertical line – concentration of the sample studied.

Fig. 11
Fig. 11

Raman shift versus concentration for a heavily doped n-type InP: green curve – upper branch of coupled plasmon–LO phonon, red line – plasma frequency, blue curve – lower branch of coupled plasmon–LO phonon, thin vertical line – concentration of the sample studied.

Tables (3)

Tables Icon

Table 1 Given parameters

Tables Icon

Table 2 Measured parameters

Tables Icon

Table 3 Resulting material parameters

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε DS = ε S ω ˜ p 2 ω 2 +iγω ε S ω ˜ p 2 ω 2 .
γ= e m 0 m * μ = 1 τ .
ω ˜ p = N m 0 ε 0 m [eV].
ε S = ε +( ε DC ε ) [ 1 κ 2 + κ 2 ρ 2 1 κ 2 ] 1 .
ω p = N m 0 ε 0 m ε [eV].
ω p = ω ˜ p ε .
ω ± 2 == 1 2 ( ω LO 2 + ω p 2 + γ TO γ )± 1 2 ( ω LO 2 + ω p 2 + γ TO γ ) 2 4 ω p 2 ω TO 2 .
E x,z = E x,z D,S δ D,S δ D,S = e iωt e i ψ D,S x e iβz .
( ε S ε D ) ω 6 +[ ( ε D ε S 2 ) ω ˜ p 2 +( ε D ε S ε S ε D ) β 2 c 2 ] ω 4 + 1 ε S ( ω ˜ p 2 +2 ε S ε D β 2 c 2 ) ω ˜ p 2 ω 2 1 ε S ε D ω ˜ p 4 β 2 c 2 =0
ω op 2 = ω ˜ p 2 ε S ε D .
γ= ω op 3 ω ˜ p 2 4 R min ( 1+ R min ) ( 1 R min ) 2 .

Metrics