Abstract

We report on the inscription of optical waveguides into crystalline bismuth germanate (Bi4Ge3O12, BGO) via the femtosecond laser direct-write (FLDW) technique. We found that by utilizing femtosecond laser pulses at Megahertz (MHz) repetition rates, a uniquely different fabrication regime can be exploited. In this paper, we show that cumulative heating effects can initiate a local transformation of the crystalline structure into an amorphous (glass-like) state that is characterized by an increased refractive index. We compare and contrast this novel, type-I modification based waveguide inscription regime with the previously reported fabrication of type-II damage/stress field structures in BGO and present measurements that indicate that the femtosecond laser writing process unavoidably causes a reduction in the electro-optic coefficient in the waveguides as compared to the bulk material. We discuss the potential of this technique for the fabrication of advanced sensor arrays for high-energy radiation detection and voltage sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microstructured waveguides in z-cut LiNbO3 by high-repetition rate direct femtosecond laser inscription

Mykhaylo Dubov, Sonia Boscolo, and David J. Webb
Opt. Mater. Express 4(8) 1708-1716 (2014)

Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal

Jinman Lv, Yazhou Cheng, Weihao Yuan, Xiaotao Hao, and Feng Chen
Opt. Mater. Express 5(6) 1274-1280 (2015)

Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses

Hongliang Liu, Yuechen Jia, Feng Chen, and Javier R. Vázquez de Aldana
Opt. Mater. Express 3(2) 278-283 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, “Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12),” Appl. Opt. 35(19), 3562–3569 (1996).
    [Crossref] [PubMed]
  2. K. Bohnert, S. Wildermuth, H. Brändle, J. Fourmigue, and D. Perrodin, “Towards crystalline electro-optic fibers for high-voltage sensing,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM1N.1.
    [Crossref]
  3. K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a Bi12Ge020 single crystal,” J. Lightwave Technol. 1(1), 93–97 (1983).
    [Crossref]
  4. D. M. Drake, L. R. Nilsson, and J. Faucett, “Bismuth germanate scintillators as detectors for high-energy gamma radiation,” Nucl. Instrum. Methods Phys. Res. 188(2), 313–317 (1981).
    [Crossref]
  5. D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N. Maisey, eds., Positron Emission Tomography (Springer, 2005).
  6. M. Zhuravleva, V. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” J. Cryst. Growth 310(7-9), 2152–2156 (2008).
    [Crossref]
  7. C. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-written waveguides in Bismuth Germanate for spatial resolved radiation detection,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), paper C1113.
    [Crossref]
  8. S. M. Mahdavi, P. J. Chandler, and P. D. Townsend, “Formation of planar waveguides in bismuth germanate by 4He+ ion implantation,” J. Phys. D Appl. Phys. 22(9), 1354–1357 (1989).
    [Crossref]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  10. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  11. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]
  12. Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
    [Crossref]
  13. R. He, Q. An, J. R. Vázquez de Aldana, Q. Lu, and F. Chen, “Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals,” Appl. Opt. 52(16), 3713–3718 (2013).
    [Crossref] [PubMed]
  14. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref] [PubMed]
  15. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
    [Crossref]
  16. M. Dubov, S. Boscolo, and D. J. Webb, “Microstructured waveguides in z-cut LiNbO3 by high-repetition rate direct femtosecond laser inscription,” Opt. Mater. Express 4(8), 1708–1716 (2014).
    [Crossref]
  17. X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
    [Crossref]
  18. M. Dubov, V. Mezentsev, A. A. Manshina, I. A. Sokolov, A. V. Povolotskiy, and Y. V. Petrov, “Waveguide fabrication in lithium-niobo-phosphate glasses by high repetition rate femtosecond laser: route to non-equilibrium material’s states,” Opt. Mater. Express 4(6), 1197–1206 (2014).
    [Crossref]
  19. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett. 37(4), 470–472 (2012).
    [Crossref] [PubMed]
  20. S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett. 38(11), 1872–1874 (2013).
    [Crossref] [PubMed]

2014 (2)

2013 (2)

2012 (2)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett. 37(4), 470–472 (2012).
[Crossref] [PubMed]

2009 (1)

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

M. Zhuravleva, V. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” J. Cryst. Growth 310(7-9), 2152–2156 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

2007 (1)

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

2006 (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

1996 (2)

1989 (1)

S. M. Mahdavi, P. J. Chandler, and P. D. Townsend, “Formation of planar waveguides in bismuth germanate by 4He+ ion implantation,” J. Phys. D Appl. Phys. 22(9), 1354–1357 (1989).
[Crossref]

1983 (1)

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a Bi12Ge020 single crystal,” J. Lightwave Technol. 1(1), 93–97 (1983).
[Crossref]

1981 (1)

D. M. Drake, L. R. Nilsson, and J. Faucett, “Bismuth germanate scintillators as detectors for high-energy gamma radiation,” Nucl. Instrum. Methods Phys. Res. 188(2), 313–317 (1981).
[Crossref]

Alberich, M.

Ams, M.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

An, Q.

Arriola, A.

Bin, Q.

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Booth, M. J.

Boscolo, S.

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Chandler, P. J.

S. M. Mahdavi, P. J. Chandler, and P. D. Townsend, “Formation of planar waveguides in bismuth germanate by 4He+ ion implantation,” J. Phys. D Appl. Phys. 22(9), 1354–1357 (1989).
[Crossref]

Chani, V.

M. Zhuravleva, V. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” J. Cryst. Growth 310(7-9), 2152–2156 (2008).
[Crossref]

Chen, F.

Chen, H.

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

Chen, W. J.

Conrad, D. C.

Davis, K. M.

Day, G. W.

Drake, D. M.

D. M. Drake, L. R. Nilsson, and J. Faucett, “Bismuth germanate scintillators as detectors for high-energy gamma radiation,” Nucl. Instrum. Methods Phys. Res. 188(2), 313–317 (1981).
[Crossref]

Dubov, M.

Eaton, S. M.

Ebendorff-Heidepriem, H.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Fang-Fang, L.

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Faucett, J.

D. M. Drake, L. R. Nilsson, and J. Faucett, “Bismuth germanate scintillators as detectors for high-energy gamma radiation,” Nucl. Instrum. Methods Phys. Res. 188(2), 313–317 (1981).
[Crossref]

Fuerbach, A.

S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett. 38(11), 1872–1874 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Gross, S.

S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett. 38(11), 1872–1874 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Guo-Ping, D.

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Hale, P. D.

He, R.

Herman, P. R.

Hirao, K.

Ho, S.

Ida, Y.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a Bi12Ge020 single crystal,” J. Lightwave Technol. 1(1), 93–97 (1983).
[Crossref]

Jesacher, A.

Jian-Rong, Q.

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Kyuma, K.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a Bi12Ge020 single crystal,” J. Lightwave Technol. 1(1), 93–97 (1983).
[Crossref]

Lancaster, D. G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Langford, N. K.

Lee, K. S.

Li, J.

Liang-Bi, S.

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Lu, Q.

Mahdavi, S. M.

S. M. Mahdavi, P. J. Chandler, and P. D. Townsend, “Formation of planar waveguides in bismuth germanate by 4He+ ion implantation,” J. Phys. D Appl. Phys. 22(9), 1354–1357 (1989).
[Crossref]

Manshina, A. A.

Marshall, G. D.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Metcalf, B. J.

Mezentsev, V.

Miese, C. T.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Mikami, N.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a Bi12Ge020 single crystal,” J. Lightwave Technol. 1(1), 93–97 (1983).
[Crossref]

Miura, K.

Ng, M. L.

Nilsson, L. R.

D. M. Drake, L. R. Nilsson, and J. Faucett, “Bismuth germanate scintillators as detectors for high-energy gamma radiation,” Nucl. Instrum. Methods Phys. Res. 188(2), 313–317 (1981).
[Crossref]

Nolte, S.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Nunoshita, M.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a Bi12Ge020 single crystal,” J. Lightwave Technol. 1(1), 93–97 (1983).
[Crossref]

Palmer, G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Petrov, Y. V.

Povolotskiy, A. V.

Rose, A. H.

Salter, P. S.

Sheng-Zhi, S.

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Simmonds, R. D.

Sokolov, I. A.

Spring, J. B.

Sugimoto, N.

Tai, S.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a Bi12Ge020 single crystal,” J. Lightwave Technol. 1(1), 93–97 (1983).
[Crossref]

Thomas-Peter, N.

Townsend, P. D.

S. M. Mahdavi, P. J. Chandler, and P. D. Townsend, “Formation of planar waveguides in bismuth germanate by 4He+ ion implantation,” J. Phys. D Appl. Phys. 22(9), 1354–1357 (1989).
[Crossref]

Tünnermann, A.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Vázquez de Aldana, J. R.

Walmsley, I. A.

Wan, S. M.

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

Webb, D. J.

Williams, P. A.

Williams, R. J.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Withford, M. J.

S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett. 38(11), 1872–1874 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Yanagida, T.

M. Zhuravleva, V. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” J. Cryst. Growth 310(7-9), 2152–2156 (2008).
[Crossref]

Yang, L.

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Yin, S. T.

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

Yoshikawa, A.

M. Zhuravleva, V. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” J. Cryst. Growth 310(7-9), 2152–2156 (2008).
[Crossref]

You, J. L.

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

Zao, S. J.

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

Zhang, H.

Zhang, Q. L.

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

Zhang, X.

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

Zhuravleva, M.

M. Zhuravleva, V. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” J. Cryst. Growth 310(7-9), 2152–2156 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Chin. Phys. Lett. (2)

Q. Bin, L. Yang, D. Guo-Ping, L. Fang-Fang, S. Liang-Bi, S. Sheng-Zhi, and Q. Jian-Rong, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

X. Zhang, S. T. Yin, S. M. Wan, J. L. You, H. Chen, S. J. Zao, and Q. L. Zhang, “Raman spectrum analysis on the solid–liquid boundary layer of BGO crystal growth,” Chin. Phys. Lett. 24(7), 1898–1900 (2007).
[Crossref]

Int. J. Appl. Glass Sci. (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

J. Cryst. Growth (1)

M. Zhuravleva, V. Chani, T. Yanagida, and A. Yoshikawa, “The micro-pulling-down growth of Bi4Si3O12 (BSO) and Bi4Ge3O12 (BGO) fiber crystals and their scintillation efficiency,” J. Cryst. Growth 310(7-9), 2152–2156 (2008).
[Crossref]

J. Lightwave Technol. (1)

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, and Y. Ida, “Fiber-optic current and voltage sensors using a Bi12Ge020 single crystal,” J. Lightwave Technol. 1(1), 93–97 (1983).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. M. Mahdavi, P. J. Chandler, and P. D. Townsend, “Formation of planar waveguides in bismuth germanate by 4He+ ion implantation,” J. Phys. D Appl. Phys. 22(9), 1354–1357 (1989).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res. (1)

D. M. Drake, L. R. Nilsson, and J. Faucett, “Bismuth germanate scintillators as detectors for high-energy gamma radiation,” Nucl. Instrum. Methods Phys. Res. 188(2), 313–317 (1981).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (2)

Other (3)

D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N. Maisey, eds., Positron Emission Tomography (Springer, 2005).

C. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-written waveguides in Bismuth Germanate for spatial resolved radiation detection,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), paper C1113.
[Crossref]

K. Bohnert, S. Wildermuth, H. Brändle, J. Fourmigue, and D. Perrodin, “Towards crystalline electro-optic fibers for high-voltage sensing,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM1N.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Possible implementation schemes for the fabrication of scintillator arrays. Left: Array of discrete crystals. Right: Single crystal with waveguide array embedded.
Fig. 2
Fig. 2 Schematic of different types of optical waveguides that can be inscribed via the femtosecond laser direct-write technique. nb: refractive index of the bulk material. nc: refractive index of the laser-inscribed core (nc > nb). nd: refractive index of the laser-inscribed depressed cladding structure (nd < nb). ns: refractive index caused by the formation of a stress field (ns>nb).
Fig. 3
Fig. 3 Optical microscope image (left) and measured near-field mode profile for the TM mode (right) of the inscribed type-II damage based waveguides. Writing parameters: repetition rate: 500 kHz, translation speed: 1000 mm/min, pulse energy: 300 nJ.
Fig. 4
Fig. 4 Difference-interference contrast (DIC) microscope image (left) and measured near-field mode profile (right) of the inscribed type-I structures. Writing parameters: repetition rate: 5.1 MHz, translation speed: 2000 mm/min, pulse energy: 160 nJ.
Fig. 5
Fig. 5 Electro-optic switching comparison between the type-II (left) and the type-I modification based waveguides (right).
Fig. 6
Fig. 6 Raman spectrum of the bulk crystal (left) and the type-I modification (right).

Metrics