Abstract

We developed two kinds of bistable smectic-A liquid crystal mixtures. Compared with traditional cyanobiphenyl and cyanoterphenyl derivatives, several changes have been made in molecular design: Isothiocyanato is used as a substitute for cyano to increase the optical anisotropy; fluoro groups are added on 3 and 5 positions of the isothiocyanato substituent terminal phenyl ring to increase both the dielectric anisotropy and eutectic property of the smectic mixture; derivatives of (4-isothiocyanatophenyl) pyridine are introduced to produce a wide smectic range. Thanks to above designs, the final smectic-A mixtures exhibit highly improved properties, such as higher contrast, lower operation voltages and wider temperature range. Based on the developed liquid crystals, electronic tags were also demonstrated, which exhibit reliable performance. This work reveals new insights for tailing liquid crystal molecules with bistability, which is extremely meaningful for the design and fabrication of green display devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Method for computing the optical properties of a smectic C* liquid-crystal cell

Alastair R. MacGregor
J. Opt. Soc. Am. A 6(9) 1493-1503 (1989)

Large birefringence liquid crystal material in terahertz range

Lei Wang, Xiao-wen Lin, Xiao Liang, Jing-bo Wu, Wei Hu, Zhi-gang Zheng, Biao-bing Jin, Yi-qiang Qin, and Yan-qing Lu
Opt. Mater. Express 2(10) 1314-1319 (2012)

Retardation-film-compensated reflective bistable twisted nematic liquid-crystal displays

Jian-Xin Guo and Xiao-Wei Sun
Appl. Opt. 42(19) 3853-3863 (2003)

References

  • View by:
  • |
  • |
  • |

  1. N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
    [Crossref]
  2. G. Bryan-Brown, C. Brown, J. Jones, E. Wood, I. Sage, P. Brett, and J. Rudin, “Grating aligned bistable nematic device,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 1997), 37–40.
  3. I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
    [Crossref]
  4. Z. G. Zheng, D. Zhang, X. W. Lin, G. Zhu, W. Hu, D. Shen, and Y. Q. Lu, “Bistable state in polymer stabilized blue phase liquid crystal,” Opt. Mater. Express 2(10), 1353–1358 (2012).
    [Crossref]
  5. D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
    [Crossref]
  6. D. K. Yang, X. Y. Huang, and Y. M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
    [Crossref]
  7. N. Gheorghiu, J. L. West, A. V. Glushchenko, and M. Mitrokhin, “Patterned field induced polymer walls for smectic A bistable flexible displays,” Appl. Phys. Lett. 88(26), 263511 (2006).
    [Crossref]
  8. D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett. 37(1), 109–111 (1980).
    [Crossref]
  9. E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, “Flexible bistable smectic-A polymer dispersed liquid crystal display,” Jpn. J. Appl. Phys. 45(5A), 4146–4151 (2006).
    [Crossref]
  10. Y. C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]
  11. D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, “Electrically induced scattering textures in smectic a phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
    [Crossref]
  12. D. J. Gardiner and H. J. Coles, “Organosiloxane liquid crystals for fast-switching bistable scattering devices,” J. Phys. D Appl. Phys. 39(23), 4948–4955 (2006).
    [Crossref]
  13. D. J. Gardiner and H. J. Coles, “Enhancing lifetime in a bistable smectic A liquid crystal device,” J. Phys. D Appl. Phys. 40(4), 977–981 (2007).
    [Crossref]
  14. C. H. Chen, V. Y. Zyryanov, and W. Lee, “Switching of defect modes in a photonic structure with a tristable smectic-A liquid crystal,” Appl. Phys. Express 5(8), 082003 (2012).
    [Crossref]
  15. L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
    [Crossref]
  16. S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
    [Crossref]

2012 (3)

2011 (1)

2007 (1)

D. J. Gardiner and H. J. Coles, “Enhancing lifetime in a bistable smectic A liquid crystal device,” J. Phys. D Appl. Phys. 40(4), 977–981 (2007).
[Crossref]

2006 (4)

D. J. Gardiner and H. J. Coles, “Organosiloxane liquid crystals for fast-switching bistable scattering devices,” J. Phys. D Appl. Phys. 39(23), 4948–4955 (2006).
[Crossref]

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

N. Gheorghiu, J. L. West, A. V. Glushchenko, and M. Mitrokhin, “Patterned field induced polymer walls for smectic A bistable flexible displays,” Appl. Phys. Lett. 88(26), 263511 (2006).
[Crossref]

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, “Flexible bistable smectic-A polymer dispersed liquid crystal display,” Jpn. J. Appl. Phys. 45(5A), 4146–4151 (2006).
[Crossref]

1997 (2)

D. K. Yang, X. Y. Huang, and Y. M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

1981 (1)

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

1980 (2)

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[Crossref]

D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett. 37(1), 109–111 (1980).
[Crossref]

1978 (1)

D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, “Electrically induced scattering textures in smectic a phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Berreman, D. W.

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett. 37(1), 109–111 (1980).
[Crossref]

Buyuktanir, E. A.

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, “Flexible bistable smectic-A polymer dispersed liquid crystal display,” Jpn. J. Appl. Phys. 45(5A), 4146–4151 (2006).
[Crossref]

Chen, C. H.

C. H. Chen, V. Y. Zyryanov, and W. Lee, “Switching of defect modes in a photonic structure with a tristable smectic-A liquid crystal,” Appl. Phys. Express 5(8), 082003 (2012).
[Crossref]

Chien, L. C.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Clark, N. A.

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[Crossref]

Coates, D.

D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, “Electrically induced scattering textures in smectic a phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Coles, H. J.

D. J. Gardiner and H. J. Coles, “Enhancing lifetime in a bistable smectic A liquid crystal device,” J. Phys. D Appl. Phys. 40(4), 977–981 (2007).
[Crossref]

D. J. Gardiner and H. J. Coles, “Organosiloxane liquid crystals for fast-switching bistable scattering devices,” J. Phys. D Appl. Phys. 39(23), 4948–4955 (2006).
[Crossref]

Crossland, W. A.

D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, “Electrically induced scattering textures in smectic a phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Dabrowski, R.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Dozov, I.

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Durand, G.

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Dziaduszek, J.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Gardiner, D. J.

D. J. Gardiner and H. J. Coles, “Enhancing lifetime in a bistable smectic A liquid crystal device,” J. Phys. D Appl. Phys. 40(4), 977–981 (2007).
[Crossref]

D. J. Gardiner and H. J. Coles, “Organosiloxane liquid crystals for fast-switching bistable scattering devices,” J. Phys. D Appl. Phys. 39(23), 4948–4955 (2006).
[Crossref]

Gauza, S.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Gheorghiu, N.

N. Gheorghiu, J. L. West, A. V. Glushchenko, and M. Mitrokhin, “Patterned field induced polymer walls for smectic A bistable flexible displays,” Appl. Phys. Lett. 88(26), 263511 (2006).
[Crossref]

Glushchenko, A.

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, “Flexible bistable smectic-A polymer dispersed liquid crystal display,” Jpn. J. Appl. Phys. 45(5A), 4146–4151 (2006).
[Crossref]

Glushchenko, A. V.

N. Gheorghiu, J. L. West, A. V. Glushchenko, and M. Mitrokhin, “Patterned field induced polymer walls for smectic A bistable flexible displays,” Appl. Phys. Lett. 88(26), 263511 (2006).
[Crossref]

Heffner, W. R.

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett. 37(1), 109–111 (1980).
[Crossref]

Holter, B.

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, “Flexible bistable smectic-A polymer dispersed liquid crystal display,” Jpn. J. Appl. Phys. 45(5A), 4146–4151 (2006).
[Crossref]

Hsiao, Y. C.

Hu, W.

Huang, X. Y.

D. K. Yang, X. Y. Huang, and Y. M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

Jin, B. B.

Lagerwall, S. T.

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[Crossref]

Le Cor, T.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Lee, W.

C. H. Chen, V. Y. Zyryanov, and W. Lee, “Switching of defect modes in a photonic structure with a tristable smectic-A liquid crystal,” Appl. Phys. Express 5(8), 082003 (2012).
[Crossref]

Y. C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref] [PubMed]

Liang, X.

Lin, X. W.

Lu, Y. Q.

Mitrokhin, M.

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, “Flexible bistable smectic-A polymer dispersed liquid crystal display,” Jpn. J. Appl. Phys. 45(5A), 4146–4151 (2006).
[Crossref]

N. Gheorghiu, J. L. West, A. V. Glushchenko, and M. Mitrokhin, “Patterned field induced polymer walls for smectic A bistable flexible displays,” Appl. Phys. Lett. 88(26), 263511 (2006).
[Crossref]

Morrissy, J. H.

D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, “Electrically induced scattering textures in smectic a phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Needham, B.

D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, “Electrically induced scattering textures in smectic a phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Nobili, M.

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

Qin, Y. Q.

Sasnouski, G.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Shen, D.

Tang, C. Y.

Wang, L.

West, J. L.

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, “Flexible bistable smectic-A polymer dispersed liquid crystal display,” Jpn. J. Appl. Phys. 45(5A), 4146–4151 (2006).
[Crossref]

N. Gheorghiu, J. L. West, A. V. Glushchenko, and M. Mitrokhin, “Patterned field induced polymer walls for smectic A bistable flexible displays,” Appl. Phys. Lett. 88(26), 263511 (2006).
[Crossref]

Wu, J. B.

Wu, S. T.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Yang, D. K.

D. K. Yang, X. Y. Huang, and Y. M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

Zhang, D.

Zhao, Y.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Zheng, Z. G.

Zhu, G.

Zhu, Y. M.

D. K. Yang, X. Y. Huang, and Y. M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

Zyryanov, V. Y.

C. H. Chen, V. Y. Zyryanov, and W. Lee, “Switching of defect modes in a photonic structure with a tristable smectic-A liquid crystal,” Appl. Phys. Express 5(8), 082003 (2012).
[Crossref]

Annu. Rev. Mater. Sci. (1)

D. K. Yang, X. Y. Huang, and Y. M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

Appl. Phys. Express (1)

C. H. Chen, V. Y. Zyryanov, and W. Lee, “Switching of defect modes in a photonic structure with a tristable smectic-A liquid crystal,” Appl. Phys. Express 5(8), 082003 (2012).
[Crossref]

Appl. Phys. Lett. (4)

N. Gheorghiu, J. L. West, A. V. Glushchenko, and M. Mitrokhin, “Patterned field induced polymer walls for smectic A bistable flexible displays,” Appl. Phys. Lett. 88(26), 263511 (2006).
[Crossref]

D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett. 37(1), 109–111 (1980).
[Crossref]

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[Crossref]

I. Dozov, M. Nobili, and G. Durand, “Fast bistable nematic display using monostable surface switching,” Appl. Phys. Lett. 70(9), 1179–1181 (1997).
[Crossref]

J. Appl. Phys. (1)

D. W. Berreman and W. R. Heffner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52(4), 3032–3039 (1981).
[Crossref]

J. Disp. Technol. (1)

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

J. Phys. D Appl. Phys. (3)

D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, “Electrically induced scattering textures in smectic a phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

D. J. Gardiner and H. J. Coles, “Organosiloxane liquid crystals for fast-switching bistable scattering devices,” J. Phys. D Appl. Phys. 39(23), 4948–4955 (2006).
[Crossref]

D. J. Gardiner and H. J. Coles, “Enhancing lifetime in a bistable smectic A liquid crystal device,” J. Phys. D Appl. Phys. 40(4), 977–981 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, “Flexible bistable smectic-A polymer dispersed liquid crystal display,” Jpn. J. Appl. Phys. 45(5A), 4146–4151 (2006).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (2)

Other (1)

G. Bryan-Brown, C. Brown, J. Jones, E. Wood, I. Sage, P. Brett, and J. Rudin, “Grating aligned bistable nematic device,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 1997), 37–40.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic representation of the operational principle of the bistable SmA displays.
Fig. 2
Fig. 2 (a) Experimental set-up for electro-optical measurements. Photographs of the textures taken with parallel polarizers: (b) Formation of HT textures. (c) Formation of FC textures.
Fig. 3
Fig. 3 (a) The static-response curve of FC-HT transition at 4 kHz for different SmA LCs. (b) Pictures of transparent and opaque states of single pixel cell filled with material 3.
Fig. 4
Fig. 4 Photos of electronic tags filled with (a) material 1 and (b) material 3.

Tables (2)

Tables Icon

Table 1 The molecular structures, compound names and composition weight of three kinds of SmA LCs.

Tables Icon

Table 2 The physical properties of the three materials and their response time of FC-HT (4 kHz) and EHDI (30 Hz) transitions at 100 V.

Metrics