Abstract

Metamaterial-based absorbers utilize the intrinsic loss, with the aid of appropriate structure design, to achieve near unity absorption at a certain frequency. The frequency of the reported absorbers is usually fixed and operates over a limited bandwidth, which greatly hampers their practical applications. Active or dynamic control over their resonance frequency is urgently necessary. Herein, we theoretically present a novel frequency tunable terahertz metamaterial absorber formed by a square metallic patch and a ground plane separated by a strontium titanate dielectric layer. Up to 80.2% frequency tuning is obtained by changing the temperature of the absorber, and there is very little variation in the strength of the absorption. The frequency shift is attributed to the temperature-dependent refractive index of the dielectric layer. Furthermore, the ratio between the lattice period and the resonance wavelength is close to 1/36 at 0.111 THz, which is smaller than the previously reported results. The proposed absorber has potential applications in detection, sensors, and selective thermal emitters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures

Yuying Lu, Jining Li, Shaohua Zhang, Jinhai Sun, and Jian Quan Yao
Appl. Opt. 57(21) 6269-6275 (2018)

Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range

Yanjiao Zhao, Baiwei Li, Chuwen Lan, Ke Bi, and Zhaowei Qu
Opt. Express 25(18) 22158-22163 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  2. J. B. Pendry, “Three-dimensional invisibility cloak at optical wavelengths,” Phys. Rev. Lett. 85, 3966 (2000)
    [Crossref] [PubMed]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004)
    [Crossref] [PubMed]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [Crossref]
  5. B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
    [Crossref]
  6. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of Fishnet Negative-Index Optical Metamaterials,” Phys. Rev. Lett. 107, 043903 (2011).
    [Crossref] [PubMed]
  7. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
    [Crossref] [PubMed]
  8. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
    [Crossref]
  9. A. Boltasseva and H. A. Atwater, “Low-less plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref] [PubMed]
  10. J. Zhou, T. Koschny, and C. M. Soukoulis, “An efficient way to reduce losses of left-handed metamaterials,” Opt. Express 16, 11147–11152 (2008).
    [Crossref] [PubMed]
  11. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refraction index metamaterials,” Phys. Rev. Lett. 105, 127401 (2010).
    [Crossref]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  13. D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
    [Crossref]
  14. G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
    [Crossref] [PubMed]
  15. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
    [Crossref]
  16. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
    [Crossref]
  17. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  18. Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. A 108, 19–24 (2012).
    [Crossref]
  19. D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
    [Crossref]
  20. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656–662 (2013).
    [Crossref]
  21. Y. Ye, Y. Jin, and S. He, “Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–503 (2010).
    [Crossref]
  22. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36, 3476–3478 (2011).
    [Crossref] [PubMed]
  23. H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
    [Crossref]
  24. D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
    [Crossref]
  25. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref] [PubMed]
  26. F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
    [Crossref]
  27. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
    [Crossref] [PubMed]
  28. M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Milli. Terahz. Waves 34, 1–27 (2013).
    [Crossref]
  29. O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
    [Crossref]
  30. F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. App. 3, e171 (2014).
    [Crossref]
  31. B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
    [Crossref]
  32. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
    [Crossref]
  33. B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
    [Crossref]
  34. B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
    [Crossref]
  35. P. Kuzel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Physique 9, 197–214 (2008).
    [Crossref]
  36. H. Nemec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
    [Crossref] [PubMed]
  37. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tenability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36, 1230–1232 (2011).
    [Crossref] [PubMed]
  38. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
    [Crossref]
  39. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
    [Crossref]
  40. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101(R) (2006).
    [Crossref]

2014 (7)

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. App. 3, e171 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
[Crossref]

2013 (7)

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656–662 (2013).
[Crossref]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Milli. Terahz. Waves 34, 1–27 (2013).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
[Crossref]

D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[Crossref]

2012 (5)

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
[Crossref] [PubMed]

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. A 108, 19–24 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

2011 (5)

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tenability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36, 1230–1232 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of Fishnet Negative-Index Optical Metamaterials,” Phys. Rev. Lett. 107, 043903 (2011).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Low-less plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36, 3476–3478 (2011).
[Crossref] [PubMed]

2010 (3)

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refraction index metamaterials,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–503 (2010).
[Crossref]

2009 (1)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[Crossref]

2008 (4)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

J. Zhou, T. Koschny, and C. M. Soukoulis, “An efficient way to reduce losses of left-handed metamaterials,” Opt. Express 16, 11147–11152 (2008).
[Crossref] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[Crossref]

P. Kuzel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Physique 9, 197–214 (2008).
[Crossref]

2007 (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
[Crossref]

2006 (2)

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101(R) (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004)
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Three-dimensional invisibility cloak at optical wavelengths,” Phys. Rev. Lett. 85, 3966 (2000)
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-less plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Azad, A. K.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tenability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36, 1230–1232 (2011).
[Crossref] [PubMed]

D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Low-less plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Buchnev, O.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
[Crossref]

Chen, H. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Chen, H.-T.

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

Chowdhury, D. R.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Cumming, D. R. S.

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
[Crossref] [PubMed]

Ding, F.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Dolling, G.

Dressel, M.

Duvillaret, L.

Enkrich, C.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Fedotov, V. A.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
[Crossref]

Fu, L.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Ge, X.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Giessen, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[Crossref]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
[Crossref]

Grant, J.

Gu, S.

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. A 108, 19–24 (2012).
[Crossref]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
[Crossref]

Guo, J.

Guo, L.

D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
[Crossref]

Hamm, J. M.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refraction index metamaterials,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–503 (2010).
[Crossref]

Hendrickson, J.

Hess, O.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refraction index metamaterials,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Hien, N. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Hu, X.

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Huang, L.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Huang, W. Q.

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

Jia, Q. X.

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Y. Ye, Y. Jin, and S. He, “Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–503 (2010).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kaczmarek, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
[Crossref]

Kadlec, F.

P. Kuzel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Physique 9, 197–214 (2008).
[Crossref]

Kaiser, S.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
[Crossref]

Khalid, A.

Koschny, T.

J. Zhou, T. Koschny, and C. M. Soukoulis, “An efficient way to reduce losses of left-handed metamaterials,” Opt. Express 16, 11147–11152 (2008).
[Crossref] [PubMed]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101(R) (2006).
[Crossref]

Kuzel, P.

Lalanne, P.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of Fishnet Negative-Index Optical Metamaterials,” Phys. Rev. Lett. 107, 043903 (2011).
[Crossref] [PubMed]

Lam, V. D.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Lee, C.

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. App. 3, e171 (2014).
[Crossref]

Lee, Y. P.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Li, J. S.

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Milli. Terahz. Waves 34, 1–27 (2013).
[Crossref]

Li, M.

D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
[Crossref]

Li, X. F.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

Lin, Y. S.

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. App. 3, e171 (2014).
[Crossref]

Linden, S.

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[Crossref]

Liu, H. T.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of Fishnet Negative-Index Optical Metamaterials,” Phys. Rev. Lett. 107, 043903 (2011).
[Crossref] [PubMed]

Liu, N.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[Crossref]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Liu, Y. H.

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. A 108, 19–24 (2012).
[Crossref]

Luo, C. R.

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. A 108, 19–24 (2012).
[Crossref]

Luo, H.

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Luo, S. N.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Ma, F.

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. App. 3, e171 (2014).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Ma, Y.

Minh, N. Q.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Nemec, H.

Ohara, J. F.

D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Padilla, W. J.

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Milli. Terahz. Waves 34, 1–27 (2013).
[Crossref]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Pashkin, A.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004)
[Crossref] [PubMed]

J. B. Pendry, “Three-dimensional invisibility cloak at optical wavelengths,” Phys. Rev. Lett. 85, 3966 (2000)
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Pusch, A.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refraction index metamaterials,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Qiu, Y.

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Rahm, M.

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Milli. Terahz. Waves 34, 1–27 (2013).
[Crossref]

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
[Crossref] [PubMed]

Ramani, S.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Reiten, M. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Saha, S.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Sauvan, C.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of Fishnet Negative-Index Optical Metamaterials,” Phys. Rev. Lett. 107, 043903 (2011).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
[Crossref]

Sebastian, M. T.

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Singh, R.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004)
[Crossref] [PubMed]

Soukoulis, C. M.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tenability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36, 1230–1232 (2011).
[Crossref] [PubMed]

Trang, P. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Tsakmakidis, K. L.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refraction index metamaterials,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Tuong, P. V.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Tuttle, G.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101(R) (2006).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Viet, D. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Wallauer, J.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
[Crossref]

Walther, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
[Crossref]

Wang, B. X.

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

Wang, G. Z

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
[Crossref]

Wang, G. Z.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

Wang, L.

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

Wang, L. L.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

Wegener, M.

Wen, D.

D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004)
[Crossref] [PubMed]

Wuestner, S.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refraction index metamaterials,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Yang, H.

D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
[Crossref]

Yang, J.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of Fishnet Negative-Index Optical Metamaterials,” Phys. Rev. Lett. 107, 043903 (2011).
[Crossref] [PubMed]

Ye, Q.

D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
[Crossref]

Ye, Y.

Zhai, X.

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

Zhang, B.

Zhang, F.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Zhang, J.

D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
[Crossref]

Zhang, L.

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101(R) (2006).
[Crossref]

Zhang, X.

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. App. 3, e171 (2014).
[Crossref]

Zhao, X. P.

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. A 108, 19–24 (2012).
[Crossref]

Zheludev, N. I.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
[Crossref]

Zhou, J.

J. Zhou, T. Koschny, and C. M. Soukoulis, “An efficient way to reduce losses of left-handed metamaterials,” Opt. Express 16, 11147–11152 (2008).
[Crossref] [PubMed]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101(R) (2006).
[Crossref]

Zhou, J. F.

Zhou, P.

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[Crossref]

Adv. Mater. (2)

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic Building for Magnetic Molecules in Three-Dimensional Optical Metamaterials,” Adv. Mater. 20, 3859–3865 (2008).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon Hybridization in stacked Cut-Wire Metamaterials,” Adv. Mater. 19, 3628–3632 (2007).
[Crossref]

Appl. Phys. A (1)

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys. A 108, 19–24 (2012).
[Crossref]

Appl. Phys. Express (1)

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7, 082601 (2014).
[Crossref]

Appl. Phys. Lett. (3)

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103, 141904 (2013).
[Crossref]

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

C. R. Physique (1)

P. Kuzel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Physique 9, 197–214 (2008).
[Crossref]

IEEE Photo. Techno. Lett. (1)

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photo. Techno. Lett. 26, 111–114 (2014).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

M. Rahm, J. S. Li, and W. J. Padilla, “THz Wave Modulators: A Brief Review on Different Modulation Techniques,” J. Infrared Milli. Terahz. Waves 34, 1–27 (2013).
[Crossref]

J. Lightw. Technol. (2)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightw. Technol. 32, 1183–1189 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightw. Technol. 32, 2293–2298 (2014).
[Crossref]

J. Opt. (1)

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

Light: Sci. App. (1)

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. App. 3, e171 (2014).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Photon. (1)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photon. 3, 157–162 (2009).
[Crossref]

Opt. Commun. (2)

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, and W. Q. Huang, “A simple nested metamaterial structure with enhanced bandwidth performance,” Opt. Commun. 303, 13–14 (2013).
[Crossref]

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, Y. P. Lee, P. T. Trang, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (2)

D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101(R) (2006).
[Crossref]

Phys. Rev. Lett. (6)

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refraction index metamaterials,” Phys. Rev. Lett. 105, 127401 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of Fishnet Negative-Index Optical Metamaterials,” Phys. Rev. Lett. 107, 043903 (2011).
[Crossref] [PubMed]

J. B. Pendry, “Three-dimensional invisibility cloak at optical wavelengths,” Phys. Rev. Lett. 85, 3966 (2000)
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid Crystal Tunable Metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

Phys. Scr. (1)

D. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88, 015402 (2013).
[Crossref]

Science (3)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004)
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Low-less plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Solid State Commun. (1)

H. Luo, X. Hu, Y. Qiu, and P. Zhou, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Cross section (a) and top view (b) of the proposed temperature tunable terahertz metamaterial absorber.
Fig. 2
Fig. 2 Temperature dependence of the permittivity (Re(ε)) and the loss tangent (tan δ) of the STO dielectric layer in the frequency of interest.
Fig. 3
Fig. 3 (a) dependence of the absorption spectra on the polarization angles of the incident wave for the proposed tunable absorber at temperature T = 300 K; (b), (c) and (d) show the distributions of the electric (|E| and real (Ez), in the center plane of the patterned structure) and magnetic (|Hy|, in the plane of y = 0) fields for resonance at 0.171 THz. Inset of the Fig. 3(a) shows the calculated absorption spectra for different material properties.
Fig. 4
Fig. 4 (a) Dependence of the absorption spectra for different values of the metallic patch length l for temperature T = 300 K. (b) shows the resonance frequency as a function of the metallic patch length l.
Fig. 5
Fig. 5 (a) Dependence of the absorption spectra of the proposed absorber on different temperatures; (b) A comparison between the resonance frequency fm and the inverse of the refractive index indicating fm ∼ 1/n. The values of n have been taken from (a) at the corresponding metamaterial resonance frequencies.
Fig. 6
Fig. 6 (a) and (d) show the unit cell of the proposed frequency tunable metallic ring and cross absorbers, respectively; (b) and (e) show the calculated absorption spectra of the proposed frequency tunable metallic ring and cross absorbers at different temperatures, respectively; (c) and (f) show the comparison between the resonance frequency fm and the inverse of the refractive index for the proposed metallic ring and cross absorbers, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε w = ε + f w 0 2 w 2 i w γ
w 0 ( T ) [ c m 1 ] = 31.2 ( T 42.5 )
γ ( T ) [ c m 1 ] = 3.3 + 0.094 T
f m = 1 2 π LC / 2 ~ 1 l ε r

Metrics