Abstract

Picosecond blue-light induced infrared absorption (BLIIRA) was investigated in periodically poled KTiOPO4, Rb:KTiOPO4, RbTiOPO4, KTiOAsO4 and RbTiOAsO4. The dependence of BLIIRA on blue light average power and intensity as well as on crystal temperature was studied. The results show the presence of at least two different types of color centers. A higher level of remnant absorption was observed in the phosphates compared to the arsenates. We attribute the largest portion of the induced absorption to photo-generated electrons and holes self-trapped in the proximity to Ti4+ and O2- ions, respectively, forming polaron color centers. Stabilization of these centers is aided by the presence of mobile alkali metal vacancies in the crystal. The lower level of remnant absorption in arsenates is related to higher population of thermal phonons related to TiO6 group vibrations in arsenates.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission measurements in KTP and isomorphic compounds

Göran Hansson, Håkan Karlsson, Shunhua Wang, and Fredrik Laurell
Appl. Opt. 39(27) 5058-5069 (2000)

Nanosecond laser induced damage in RbTiOPO4: The missing influence of crystal quality

Anne Hildenbrand, Frank R. Wagner, Jean-Yves Natoli, and Mireille Commandré
Opt. Express 17(20) 18263-18270 (2009)

Measurement of the χ(2) tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals

Michael V. Pack, Darrell J. Armstrong, and Arlee V. Smith
Appl. Opt. 43(16) 3319-3323 (2004)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
    [Crossref]
  2. P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. J. Zola, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
    [Crossref]
  3. Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30(18), 1516–1517 (1994).
    [Crossref]
  4. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
    [Crossref]
  5. Q. Jiang, A. Lovejoy, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Ferroelectricity, conductivity, domain structure and poling conditions of rubidium titanyl phosphate,” J. Phys. D Appl. Phys. 33(21), 2831–2836 (2000).
    [Crossref]
  6. A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
    [Crossref]
  7. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32(6), 556–557 (1996).
    [Crossref]
  8. G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
    [Crossref]
  9. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices,” Appl. Phys. Lett. 95(19), 191103 (2009).
    [Crossref]
  10. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
    [Crossref] [PubMed]
  11. M. Baudisch, M. Hemmer, H. Pires, and J. Biegert, “Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power,” Opt. Lett. 39(20), 5802–5805 (2014).
    [Crossref] [PubMed]
  12. M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
    [Crossref]
  13. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201 (2011).
    [Crossref]
  14. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
    [Crossref] [PubMed]
  15. H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO(3) crystal,” Opt. Express 18(1), 253–258 (2010).
    [Crossref] [PubMed]
  16. R. Blachman, P. F. Bordui, and M. M. Fejer, “Laser-induced photochromic damage in potassium titanyl phosphate,” Appl. Phys. Lett. 64(11), 1318–1320 (1994).
    [Crossref]
  17. B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
    [Crossref]
  18. J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm,” Appl. Phys. Lett. 70(3), 277–279 (1997).
    [Crossref]
  19. L. Carrion and J.-P. Girardeau-Montaut, “Gray-track damage in potassium titanyl phosphate under a picosecond regime at 532 nm,” Appl. Phys. Lett. 77(8), 1074–1076 (2000).
    [Crossref]
  20. V. Mürk, V. Denks, A. Dudelzak, P.-P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 141, 472–476 (1998).
  21. G. J. Edwards, M. P. Scripsick, L. E. Halliburton, and R. F. Belt, “Identification of a radiation-induced hole center in KTiOPO4,” Phys. Rev. B 48(10), 6884–6891 (1993).
    [Crossref]
  22. G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks,” J. Appl. Phys. 72(7), 2705–2712 (1992).
    [Crossref]
  23. B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65(19), 2401–2403 (1994).
    [Crossref]
  24. J. C. Jacco, D. R. Rockafellow, and E. A. Teppo, “Bulk-darkening threshold of flux-grown KTiOPO4.,” Opt. Lett. 16(17), 1307–1309 (1991).
    [Crossref] [PubMed]
  25. M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65(12), 4976–4982 (1989).
    [Crossref]
  26. M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
    [Crossref]
  27. M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
    [Crossref]
  28. S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
    [Crossref]
  29. P. A. Morris, A. Ferretti, J. D. Bierlein, and G. M. Loiacono, “Reduction of the ionic conductivity of flux grown KTiOPO4 crystals,” J. Cryst. Growth 109(1-4), 361–366 (1991).
    [Crossref]
  30. S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quai-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62(1), 183–195 (1993).
    [Crossref]
  31. J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
    [Crossref]
  32. C. V. Kannan, H. Kimura, A. Miyazaki, and P. Ramasamy, “Optical and electrical studies on trivalent-ion (Cr, Fe)-doped potassium titanyl phosphate single crystals,” Jpn. J. Appl. Phys. 43(9B), 6667–6671 (2004).
    [Crossref]
  33. H. H. Lim, S. Kurimura, and N. E. Yu, “Parasitic-light-suppressed quasi-phase-matched optical parametric oscillation device,” Opt. Express 22(5), 5209–5215 (2014).
    [Crossref] [PubMed]
  34. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023 (2004).
    [Crossref]
  35. J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
    [Crossref]
  36. A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO₄ below 400 nm at high peak-intensities,” Opt. Express 21(2), 1395–1403 (2013).
    [Crossref] [PubMed]
  37. P. Zeil, A. Zukauskas, S. Tjörnhammar, C. Canalias, V. Pasiskevicius, and F. Laurell, “High-power continuous-wave frequency-doubling in KTiOAsO4.,” Opt. Express 21(25), 30453–30459 (2013).
    [Crossref] [PubMed]
  38. R. P. Feynman, “Slow electrons in a polar crystal,” Phys. Rev. 97(3), 660–665 (1955).
    [Crossref]
  39. W. S. Baer, “Free-carrier absorption in reduced SrTiO3,” Phys. Rev. 144(2), 734–738 (1966).
    [Crossref]
  40. H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
    [Crossref] [PubMed]
  41. C. Di Valentin and A. Selloni, “Bulk and Surface Polarons in Photoexcited Anatase TiO2,” J. Phys. Chem. Lett. 2(17), 2223–2228 (2011).
    [Crossref]
  42. C. A. Ebbers and S. P. Velsko, “Optical and thermo-optical characterization of KTP and its isomorphs for 1.06 im pumped OPO’s,” in Photonics West ’96, M. C. Gupta, W. J. Kozlovsky, and D. C. MacPherson, eds. (International Society for Optics and Photonics, 1996), pp. 227–239.
  43. S. Emanueli and A. Arie, “Temperature-Dependent Dispersion Equations for KTiOPO4 and KTiOAsO4.,” Appl. Opt. 42(33), 6661–6665 (2003).
    [Crossref] [PubMed]
  44. I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B Lasers Opt. 79(1), 77–81 (2004).
    [Crossref]
  45. A. Deepthy, M. N. Satyanarayan, K. S. R. K. Rao, and H. L. Bhat, “Photoluminescence studies on gray tracked KTiOPO4 single crystals,” J. Appl. Phys. 85(12), 8332–8336 (1999).
    [Crossref]
  46. W. Y. Ching and Y.-N. Xu, “Band structure and linear optical properties of KTiOPO4.,” Phys. Rev. B Condens. Matter 44(10), 5332–5335 (1991).
    [Crossref] [PubMed]
  47. V. V. Atuchin, V. G. Kesler, G. Meng, and Z. S. Lin, “The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals,” J. Phys. Condens. Matter 24(40), 405503 (2012).
    [Crossref] [PubMed]
  48. L. D. Landau, “Über die Bewegung der Elektronen in Kristallgitter,” Phys. Z. Sowjetunion 3, 644–645 (1933).
  49. D. Emin, “Optical properties of large and small polarons and bipolarons,” Phys. Rev. B Condens. Matter 48(18), 13691–13702 (1993).
    [Crossref] [PubMed]
  50. K. Seeger, Semicondictor Physics, 2nd ed. (Springer-Verlag, 1982).
  51. R. J. Bolt and P. Bennema, “Potassium tutanyl phosphate KTiOPO4 (KTP): Relation between crystal structure and morphology,” J. Cryst. Growth 102(1-2), 329–340 (1990).
    [Crossref]
  52. C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
    [Crossref]
  53. G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
    [Crossref]

2014 (3)

2013 (2)

2012 (2)

V. V. Atuchin, V. G. Kesler, G. Meng, and Z. S. Lin, “The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals,” J. Phys. Condens. Matter 24(40), 405503 (2012).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

2009 (1)

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices,” Appl. Phys. Lett. 95(19), 191103 (2009).
[Crossref]

2007 (1)

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

2005 (1)

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

2004 (3)

C. V. Kannan, H. Kimura, A. Miyazaki, and P. Ramasamy, “Optical and electrical studies on trivalent-ion (Cr, Fe)-doped potassium titanyl phosphate single crystals,” Jpn. J. Appl. Phys. 43(9B), 6667–6671 (2004).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023 (2004).
[Crossref]

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B Lasers Opt. 79(1), 77–81 (2004).
[Crossref]

2003 (3)

S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
[Crossref]

A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
[Crossref]

S. Emanueli and A. Arie, “Temperature-Dependent Dispersion Equations for KTiOPO4 and KTiOAsO4.,” Appl. Opt. 42(33), 6661–6665 (2003).
[Crossref] [PubMed]

2001 (1)

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

2000 (2)

Q. Jiang, A. Lovejoy, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Ferroelectricity, conductivity, domain structure and poling conditions of rubidium titanyl phosphate,” J. Phys. D Appl. Phys. 33(21), 2831–2836 (2000).
[Crossref]

L. Carrion and J.-P. Girardeau-Montaut, “Gray-track damage in potassium titanyl phosphate under a picosecond regime at 532 nm,” Appl. Phys. Lett. 77(8), 1074–1076 (2000).
[Crossref]

1999 (3)

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

A. Deepthy, M. N. Satyanarayan, K. S. R. K. Rao, and H. L. Bhat, “Photoluminescence studies on gray tracked KTiOPO4 single crystals,” J. Appl. Phys. 85(12), 8332–8336 (1999).
[Crossref]

1998 (1)

V. Mürk, V. Denks, A. Dudelzak, P.-P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 141, 472–476 (1998).

1997 (2)

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm,” Appl. Phys. Lett. 70(3), 277–279 (1997).
[Crossref]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[Crossref]

1996 (2)

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32(6), 556–557 (1996).
[Crossref]

C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

1995 (1)

M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
[Crossref]

1994 (4)

M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
[Crossref]

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65(19), 2401–2403 (1994).
[Crossref]

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30(18), 1516–1517 (1994).
[Crossref]

R. Blachman, P. F. Bordui, and M. M. Fejer, “Laser-induced photochromic damage in potassium titanyl phosphate,” Appl. Phys. Lett. 64(11), 1318–1320 (1994).
[Crossref]

1993 (3)

G. J. Edwards, M. P. Scripsick, L. E. Halliburton, and R. F. Belt, “Identification of a radiation-induced hole center in KTiOPO4,” Phys. Rev. B 48(10), 6884–6891 (1993).
[Crossref]

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quai-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62(1), 183–195 (1993).
[Crossref]

D. Emin, “Optical properties of large and small polarons and bipolarons,” Phys. Rev. B Condens. Matter 48(18), 13691–13702 (1993).
[Crossref] [PubMed]

1992 (1)

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks,” J. Appl. Phys. 72(7), 2705–2712 (1992).
[Crossref]

1991 (3)

W. Y. Ching and Y.-N. Xu, “Band structure and linear optical properties of KTiOPO4.,” Phys. Rev. B Condens. Matter 44(10), 5332–5335 (1991).
[Crossref] [PubMed]

P. A. Morris, A. Ferretti, J. D. Bierlein, and G. M. Loiacono, “Reduction of the ionic conductivity of flux grown KTiOPO4 crystals,” J. Cryst. Growth 109(1-4), 361–366 (1991).
[Crossref]

J. C. Jacco, D. R. Rockafellow, and E. A. Teppo, “Bulk-darkening threshold of flux-grown KTiOPO4.,” Opt. Lett. 16(17), 1307–1309 (1991).
[Crossref] [PubMed]

1990 (1)

R. J. Bolt and P. Bennema, “Potassium tutanyl phosphate KTiOPO4 (KTP): Relation between crystal structure and morphology,” J. Cryst. Growth 102(1-2), 329–340 (1990).
[Crossref]

1989 (1)

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65(12), 4976–4982 (1989).
[Crossref]

1988 (1)

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

1987 (1)

P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. J. Zola, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[Crossref]

1976 (1)

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

1966 (1)

W. S. Baer, “Free-carrier absorption in reduced SrTiO3,” Phys. Rev. 144(2), 734–738 (1966).
[Crossref]

1955 (1)

R. P. Feynman, “Slow electrons in a polar crystal,” Phys. Rev. 97(3), 660–665 (1955).
[Crossref]

1933 (1)

L. D. Landau, “Über die Bewegung der Elektronen in Kristallgitter,” Phys. Z. Sowjetunion 3, 644–645 (1933).

Albrecht, H.

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm,” Appl. Phys. Lett. 70(3), 277–279 (1997).
[Crossref]

Ališauskas, S.

Andriukaitis, G.

Arie, A.

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B Lasers Opt. 79(1), 77–81 (2004).
[Crossref]

S. Emanueli and A. Arie, “Temperature-Dependent Dispersion Equations for KTiOPO4 and KTiOAsO4.,” Appl. Opt. 42(33), 6661–6665 (2003).
[Crossref] [PubMed]

Arvidsson, G.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32(6), 556–557 (1996).
[Crossref]

Atuchin, V. V.

V. V. Atuchin, V. G. Kesler, G. Meng, and Z. S. Lin, “The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals,” J. Phys. Condens. Matter 24(40), 405503 (2012).
[Crossref] [PubMed]

Babb, M.

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks,” J. Appl. Phys. 72(7), 2705–2712 (1992).
[Crossref]

Bäder, U.

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

Baer, W. S.

W. S. Baer, “Free-carrier absorption in reduced SrTiO3,” Phys. Rev. 144(2), 734–738 (1966).
[Crossref]

Balciunas, T.

Baltuška, A.

Baudisch, M.

Belt, R. F.

G. J. Edwards, M. P. Scripsick, L. E. Halliburton, and R. F. Belt, “Identification of a radiation-induced hole center in KTiOPO4,” Phys. Rev. B 48(10), 6884–6891 (1993).
[Crossref]

Bennema, P.

R. J. Bolt and P. Bennema, “Potassium tutanyl phosphate KTiOPO4 (KTP): Relation between crystal structure and morphology,” J. Cryst. Growth 102(1-2), 329–340 (1990).
[Crossref]

Bhalla, S.

C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Bhat, H. L.

A. Deepthy, M. N. Satyanarayan, K. S. R. K. Rao, and H. L. Bhat, “Photoluminescence studies on gray tracked KTiOPO4 single crystals,” J. Appl. Phys. 85(12), 8332–8336 (1999).
[Crossref]

Biegert, J.

Bierlein, J. D.

P. A. Morris, A. Ferretti, J. D. Bierlein, and G. M. Loiacono, “Reduction of the ionic conductivity of flux grown KTiOPO4 crystals,” J. Cryst. Growth 109(1-4), 361–366 (1991).
[Crossref]

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

Blachman, R.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65(19), 2401–2403 (1994).
[Crossref]

R. Blachman, P. F. Bordui, and M. M. Fejer, “Laser-induced photochromic damage in potassium titanyl phosphate,” Appl. Phys. Lett. 64(11), 1318–1320 (1994).
[Crossref]

Bolt, R. J.

R. J. Bolt and P. Bennema, “Potassium tutanyl phosphate KTiOPO4 (KTP): Relation between crystal structure and morphology,” J. Cryst. Growth 102(1-2), 329–340 (1990).
[Crossref]

Bordui, P. F.

R. Blachman, P. F. Bordui, and M. M. Fejer, “Laser-induced photochromic damage in potassium titanyl phosphate,” Appl. Phys. Lett. 64(11), 1318–1320 (1994).
[Crossref]

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65(19), 2401–2403 (1994).
[Crossref]

P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. J. Zola, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[Crossref]

Borsutzky, A.

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

Boulanger, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm,” Appl. Phys. Lett. 70(3), 277–279 (1997).
[Crossref]

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65(19), 2401–2403 (1994).
[Crossref]

Bravo, D.

M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
[Crossref]

Bréhat, F.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Buchholz, M.

H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
[Crossref] [PubMed]

Canalias, C.

Carabatos-Nedlec, C.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Carrion, L.

L. Carrion and J.-P. Girardeau-Montaut, “Gray-track damage in potassium titanyl phosphate under a picosecond regime at 532 nm,” Appl. Phys. Lett. 77(8), 1074–1076 (2000).
[Crossref]

Chen, M.-C.

Chen, Q.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30(18), 1516–1517 (1994).
[Crossref]

Ching, W. Y.

W. Y. Ching and Y.-N. Xu, “Band structure and linear optical properties of KTiOPO4.,” Phys. Rev. B Condens. Matter 44(10), 5332–5335 (1991).
[Crossref] [PubMed]

Deepthy, A.

A. Deepthy, M. N. Satyanarayan, K. S. R. K. Rao, and H. L. Bhat, “Photoluminescence studies on gray tracked KTiOPO4 single crystals,” J. Appl. Phys. 85(12), 8332–8336 (1999).
[Crossref]

Denks, V.

V. Mürk, V. Denks, A. Dudelzak, P.-P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 141, 472–476 (1998).

Di Valentin, C.

H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
[Crossref] [PubMed]

C. Di Valentin and A. Selloni, “Bulk and Surface Polarons in Photoexcited Anatase TiO2,” J. Phys. Chem. Lett. 2(17), 2223–2228 (2011).
[Crossref]

Díaz, F.

M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
[Crossref]

Dudelzak, A.

V. Mürk, V. Denks, A. Dudelzak, P.-P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 141, 472–476 (1998).

Edwards, G. J.

S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
[Crossref]

G. J. Edwards, M. P. Scripsick, L. E. Halliburton, and R. F. Belt, “Identification of a radiation-induced hole center in KTiOPO4,” Phys. Rev. B 48(10), 6884–6891 (1993).
[Crossref]

Emanueli, S.

Emin, D.

D. Emin, “Optical properties of large and small polarons and bipolarons,” Phys. Rev. B Condens. Matter 48(18), 13691–13702 (1993).
[Crossref] [PubMed]

Englander, A.

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

Fejer, M. M.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65(19), 2401–2403 (1994).
[Crossref]

R. Blachman, P. F. Bordui, and M. M. Fejer, “Laser-induced photochromic damage in potassium titanyl phosphate,” Appl. Phys. Lett. 64(11), 1318–1320 (1994).
[Crossref]

Fernelius, N. C.

S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
[Crossref]

Ferretti, A.

P. A. Morris, A. Ferretti, J. D. Bierlein, and G. M. Loiacono, “Reduction of the ionic conductivity of flux grown KTiOPO4 crystals,” J. Cryst. Growth 109(1-4), 361–366 (1991).
[Crossref]

Fève, J. P.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm,” Appl. Phys. Lett. 70(3), 277–279 (1997).
[Crossref]

Feynman, R. P.

R. P. Feynman, “Slow electrons in a polar crystal,” Phys. Rev. 97(3), 660–665 (1955).
[Crossref]

Findling, Y.

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

Fontana, M. D.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Fragemann, A.

A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
[Crossref]

Furusawa, S.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quai-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62(1), 183–195 (1993).
[Crossref]

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

Girardeau-Montaut, J.-P.

L. Carrion and J.-P. Girardeau-Montaut, “Gray-track damage in potassium titanyl phosphate under a picosecond regime at 532 nm,” Appl. Phys. Lett. 77(8), 1074–1076 (2000).
[Crossref]

Goellner, S. H.

M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
[Crossref]

Guo, R.

C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Halliburton, L. E.

S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
[Crossref]

M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
[Crossref]

G. J. Edwards, M. P. Scripsick, L. E. Halliburton, and R. F. Belt, “Identification of a radiation-induced hole center in KTiOPO4,” Phys. Rev. B 48(10), 6884–6891 (1993).
[Crossref]

Hayasi, H.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quai-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62(1), 183–195 (1993).
[Crossref]

Heissler, S.

H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
[Crossref] [PubMed]

Hellström, J.

A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
[Crossref]

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

Hemmer, M.

Henriksson, P.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32(6), 556–557 (1996).
[Crossref]

Hirohashi, J.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

Hopkins, F. K.

M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
[Crossref]

Hu, X. B.

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

Hu, Z. W.

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

Hutton, K. B.

Q. Jiang, A. Lovejoy, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Ferroelectricity, conductivity, domain structure and poling conditions of rubidium titanyl phosphate,” J. Phys. D Appl. Phys. 33(21), 2831–2836 (2000).
[Crossref]

Ishibashi, Y.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quai-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62(1), 183–195 (1993).
[Crossref]

Ishizuki, H.

Jacco, J. C.

J. C. Jacco, D. R. Rockafellow, and E. A. Teppo, “Bulk-darkening threshold of flux-grown KTiOPO4.,” Opt. Lett. 16(17), 1307–1309 (1991).
[Crossref] [PubMed]

P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. J. Zola, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[Crossref]

Jiang, M. H.

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

Jiang, Q.

Q. Jiang, A. Lovejoy, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Ferroelectricity, conductivity, domain structure and poling conditions of rubidium titanyl phosphate,” J. Phys. D Appl. Phys. 33(21), 2831–2836 (2000).
[Crossref]

Kannan, C. V.

C. V. Kannan, H. Kimura, A. Miyazaki, and P. Ramasamy, “Optical and electrical studies on trivalent-ion (Cr, Fe)-doped potassium titanyl phosphate single crystals,” Jpn. J. Appl. Phys. 43(9B), 6667–6671 (2004).
[Crossref]

Kapteyn, H. C.

Karlsson, H.

A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
[Crossref]

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[Crossref]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32(6), 556–557 (1996).
[Crossref]

Katiyar, R. S.

C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Kesler, V. G.

V. V. Atuchin, V. G. Kesler, G. Meng, and Z. S. Lin, “The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals,” J. Phys. Condens. Matter 24(40), 405503 (2012).
[Crossref] [PubMed]

Kimura, H.

C. V. Kannan, H. Kimura, A. Miyazaki, and P. Ramasamy, “Optical and electrical studies on trivalent-ion (Cr, Fe)-doped potassium titanyl phosphate single crystals,” Jpn. J. Appl. Phys. 43(9B), 6667–6671 (2004).
[Crossref]

Kirshner, B.

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B Lasers Opt. 79(1), 77–81 (2004).
[Crossref]

Kugel, G. E.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Kurimura, S.

Landau, L. D.

L. D. Landau, “Über die Bewegung der Elektronen in Kristallgitter,” Phys. Z. Sowjetunion 3, 644–645 (1933).

Laurell, F.

P. Zeil, A. Zukauskas, S. Tjörnhammar, C. Canalias, V. Pasiskevicius, and F. Laurell, “High-power continuous-wave frequency-doubling in KTiOAsO4.,” Opt. Express 21(25), 30453–30459 (2013).
[Crossref] [PubMed]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201 (2011).
[Crossref]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices,” Appl. Phys. Lett. 95(19), 191103 (2009).
[Crossref]

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023 (2004).
[Crossref]

A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
[Crossref]

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[Crossref]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32(6), 556–557 (1996).
[Crossref]

Lim, H. H.

Lin, Z. S.

V. V. Atuchin, V. G. Kesler, G. Meng, and Z. S. Lin, “The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals,” J. Phys. Condens. Matter 24(40), 405503 (2012).
[Crossref] [PubMed]

Liu, Y. G.

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

LoIacono, D. N.

M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
[Crossref]

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks,” J. Appl. Phys. 72(7), 2705–2712 (1992).
[Crossref]

Loiacono, G. M.

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks,” J. Appl. Phys. 72(7), 2705–2712 (1992).
[Crossref]

P. A. Morris, A. Ferretti, J. D. Bierlein, and G. M. Loiacono, “Reduction of the ionic conductivity of flux grown KTiOPO4 crystals,” J. Cryst. Growth 109(1-4), 361–366 (1991).
[Crossref]

P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. J. Zola, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[Crossref]

López, F. J.

M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
[Crossref]

Lovejoy, A.

Q. Jiang, A. Lovejoy, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Ferroelectricity, conductivity, domain structure and poling conditions of rubidium titanyl phosphate,” J. Phys. D Appl. Phys. 33(21), 2831–2836 (2000).
[Crossref]

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Mangin, J.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm,” Appl. Phys. Lett. 70(3), 277–279 (1997).
[Crossref]

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Martín, M. J.

M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
[Crossref]

McGee, T.

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks,” J. Appl. Phys. 72(7), 2705–2712 (1992).
[Crossref]

Ménaert, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Meng, G.

V. V. Atuchin, V. G. Kesler, G. Meng, and Z. S. Lin, “The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals,” J. Phys. Condens. Matter 24(40), 405503 (2012).
[Crossref] [PubMed]

Miyamoto, A.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quai-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62(1), 183–195 (1993).
[Crossref]

Miyazaki, A.

C. V. Kannan, H. Kimura, A. Miyazaki, and P. Ramasamy, “Optical and electrical studies on trivalent-ion (Cr, Fe)-doped potassium titanyl phosphate single crystals,” Jpn. J. Appl. Phys. 43(9B), 6667–6671 (2004).
[Crossref]

Morris, P. A.

P. A. Morris, A. Ferretti, J. D. Bierlein, and G. M. Loiacono, “Reduction of the ionic conductivity of flux grown KTiOPO4 crystals,” J. Cryst. Growth 109(1-4), 361–366 (1991).
[Crossref]

Mürk, V.

V. Mürk, V. Denks, A. Dudelzak, P.-P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 141, 472–476 (1998).

Murnane, M. M.

Natzeck, C.

H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
[Crossref] [PubMed]

Nefedov, A.

H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
[Crossref] [PubMed]

Nordborg, J.

A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
[Crossref]

Pasiskevicius, V.

P. Zeil, A. Zukauskas, S. Tjörnhammar, C. Canalias, V. Pasiskevicius, and F. Laurell, “High-power continuous-wave frequency-doubling in KTiOAsO4.,” Opt. Express 21(25), 30453–30459 (2013).
[Crossref] [PubMed]

A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO₄ below 400 nm at high peak-intensities,” Opt. Express 21(2), 1395–1403 (2013).
[Crossref] [PubMed]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201 (2011).
[Crossref]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices,” Appl. Phys. Lett. 95(19), 191103 (2009).
[Crossref]

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023 (2004).
[Crossref]

A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
[Crossref]

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

Peltz, M.

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

Pires, H.

Popmintchev, T.

Proulx, P.-P.

V. Mürk, V. Denks, A. Dudelzak, P.-P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 141, 472–476 (1998).

Pugžlys, A.

Ramasamy, P.

C. V. Kannan, H. Kimura, A. Miyazaki, and P. Ramasamy, “Optical and electrical studies on trivalent-ion (Cr, Fe)-doped potassium titanyl phosphate single crystals,” Jpn. J. Appl. Phys. 43(9B), 6667–6671 (2004).
[Crossref]

Rao, K. S. R. K.

A. Deepthy, M. N. Satyanarayan, K. S. R. K. Rao, and H. L. Bhat, “Photoluminescence studies on gray tracked KTiOPO4 single crystals,” J. Appl. Phys. 85(12), 8332–8336 (1999).
[Crossref]

Risk, W. P.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30(18), 1516–1517 (1994).
[Crossref]

Rockafellow, D. R.

Roelofs, M. G.

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65(12), 4976–4982 (1989).
[Crossref]

Rosenman, G.

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

Rottenberg, J.

M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
[Crossref]

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Sasaki, T.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quai-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62(1), 183–195 (1993).
[Crossref]

Satyanarayan, M. N.

A. Deepthy, M. N. Satyanarayan, K. S. R. K. Rao, and H. L. Bhat, “Photoluminescence studies on gray tracked KTiOPO4 single crystals,” J. Appl. Phys. 85(12), 8332–8336 (1999).
[Crossref]

Scripsick, M. P.

S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
[Crossref]

M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
[Crossref]

G. J. Edwards, M. P. Scripsick, L. E. Halliburton, and R. F. Belt, “Identification of a radiation-induced hole center in KTiOPO4,” Phys. Rev. B 48(10), 6884–6891 (1993).
[Crossref]

Selloni, A.

C. Di Valentin and A. Selloni, “Bulk and Surface Polarons in Photoexcited Anatase TiO2,” J. Phys. Chem. Lett. 2(17), 2223–2228 (2011).
[Crossref]

Setzler, S. D.

S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
[Crossref]

Sezen, H.

H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
[Crossref] [PubMed]

Skliar, A.

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

Solé, R.

M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
[Crossref]

Stevens, K. T.

S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
[Crossref]

Stolzenberger, R. A.

P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. J. Zola, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[Crossref]

Taira, T.

Tao, R.

C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Teppo, E. A.

Thilmann, N.

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201 (2011).
[Crossref]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices,” Appl. Phys. Lett. 95(19), 191103 (2009).
[Crossref]

Thomas, P. A.

Q. Jiang, A. Lovejoy, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Ferroelectricity, conductivity, domain structure and poling conditions of rubidium titanyl phosphate,” J. Phys. D Appl. Phys. 33(21), 2831–2836 (2000).
[Crossref]

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

Tjörnhammar, S.

Tu, C.-S.

C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Urenski, P.

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

Vassiltsenko, V.

V. Mürk, V. Denks, A. Dudelzak, P.-P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 141, 472–476 (1998).

Wallenstein, R.

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

Wang, J. Y.

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

Wang, S.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023 (2004).
[Crossref]

Wang, X. X.

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

Ward, R. C. C.

Q. Jiang, A. Lovejoy, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Ferroelectricity, conductivity, domain structure and poling conditions of rubidium titanyl phosphate,” J. Phys. D Appl. Phys. 33(21), 2831–2836 (2000).
[Crossref]

Wöll, C.

H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
[Crossref] [PubMed]

Wyncke, B.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Xu, Y.-N.

W. Y. Ching and Y.-N. Xu, “Band structure and linear optical properties of KTiOPO4.,” Phys. Rev. B Condens. Matter 44(10), 5332–5335 (1991).
[Crossref] [PubMed]

Yu, N. E.

Yutsis, I.

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B Lasers Opt. 79(1), 77–81 (2004).
[Crossref]

Zaldo, C.

M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
[Crossref]

Zang, H. J.

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

Zeil, P.

Zhang, J. X.

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

Zola, J. J.

P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. J. Zola, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[Crossref]

Zukauskas, A.

Zumsteg, F. C.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73(7), 663–670 (2001).
[Crossref]

Appl. Phys. B Lasers Opt. (1)

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B Lasers Opt. 79(1), 77–81 (2004).
[Crossref]

Appl. Phys. Lett. (8)

M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66(25), 3428 (1995).
[Crossref]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[Crossref]

A. Fragemann, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83(15), 3090–3092 (2003).
[Crossref]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices,” Appl. Phys. Lett. 95(19), 191103 (2009).
[Crossref]

R. Blachman, P. F. Bordui, and M. M. Fejer, “Laser-induced photochromic damage in potassium titanyl phosphate,” Appl. Phys. Lett. 64(11), 1318–1320 (1994).
[Crossref]

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm,” Appl. Phys. Lett. 70(3), 277–279 (1997).
[Crossref]

L. Carrion and J.-P. Girardeau-Montaut, “Gray-track damage in potassium titanyl phosphate under a picosecond regime at 532 nm,” Appl. Phys. Lett. 77(8), 1074–1076 (2000).
[Crossref]

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65(19), 2401–2403 (1994).
[Crossref]

Electron. Lett. (2)

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30(18), 1516–1517 (1994).
[Crossref]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32(6), 556–557 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of Laser-Induced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

J. Appl. Phys. (8)

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: A new nonlinear optical material,” J. Appl. Phys. 47(11), 4980–4985 (1976).
[Crossref]

G. M. Loiacono, D. N. Loiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: Grey tracks,” J. Appl. Phys. 72(7), 2705–2712 (1992).
[Crossref]

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65(12), 4976–4982 (1989).
[Crossref]

M. J. Martín, D. Bravo, R. Solé, F. Díaz, F. J. López, and C. Zaldo, “Thermal reduction of KTiOPO4 single crystals,” J. Appl. Phys. 76(11), 7510–7518 (1994).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023 (2004).
[Crossref]

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

A. Deepthy, M. N. Satyanarayan, K. S. R. K. Rao, and H. L. Bhat, “Photoluminescence studies on gray tracked KTiOPO4 single crystals,” J. Appl. Phys. 85(12), 8332–8336 (1999).
[Crossref]

C.-S. Tu, R. Guo, R. Tao, R. S. Katiyar, R. Guo, and S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

J. Cryst. Growth (4)

R. J. Bolt and P. Bennema, “Potassium tutanyl phosphate KTiOPO4 (KTP): Relation between crystal structure and morphology,” J. Cryst. Growth 102(1-2), 329–340 (1990).
[Crossref]

J. X. Zhang, J. Y. Wang, X. B. Hu, H. J. Zang, X. X. Wang, Y. G. Liu, and M. H. Jiang, “Growth, defects, conductivity and other properties of and crystals,” J. Cryst. Growth 275(1-2), e2113–e2116 (2005).
[Crossref]

P. A. Morris, A. Ferretti, J. D. Bierlein, and G. M. Loiacono, “Reduction of the ionic conductivity of flux grown KTiOPO4 crystals,” J. Cryst. Growth 109(1-4), 361–366 (1991).
[Crossref]

P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. J. Zola, “Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system,” J. Cryst. Growth 84(3), 403–408 (1987).
[Crossref]

J. Phys. C Solid State Phys. (1)

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedlec, and J. Mangin, “The vibrational spectrum of a KTiOPO4, single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

J. Phys. Chem. Lett. (1)

C. Di Valentin and A. Selloni, “Bulk and Surface Polarons in Photoexcited Anatase TiO2,” J. Phys. Chem. Lett. 2(17), 2223–2228 (2011).
[Crossref]

J. Phys. Condens. Matter (2)

V. V. Atuchin, V. G. Kesler, G. Meng, and Z. S. Lin, “The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals,” J. Phys. Condens. Matter 24(40), 405503 (2012).
[Crossref] [PubMed]

S. D. Setzler, K. T. Stevens, N. C. Fernelius, M. P. Scripsick, G. J. Edwards, and L. E. Halliburton, “Electron Paramagnetic Resonance and Electron-nuclear Double-resonance Study of Ti3+ Centres in KTiOPO4,” J. Phys. Condens. Matter 15(23), 3969–3984 (2003).
[Crossref]

J. Phys. D Appl. Phys. (2)

Q. Jiang, A. Lovejoy, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Ferroelectricity, conductivity, domain structure and poling conditions of rubidium titanyl phosphate,” J. Phys. D Appl. Phys. 33(21), 2831–2836 (2000).
[Crossref]

G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu, “Periodically poled KTiOAsO4 crystals for optical parametric oscillation,” J. Phys. D Appl. Phys. 32(14), L49–L52 (1999).
[Crossref]

J. Phys. Soc. Jpn. (1)

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quai-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62(1), 183–195 (1993).
[Crossref]

Jpn. J. Appl. Phys. (1)

C. V. Kannan, H. Kimura, A. Miyazaki, and P. Ramasamy, “Optical and electrical studies on trivalent-ion (Cr, Fe)-doped potassium titanyl phosphate single crystals,” Jpn. J. Appl. Phys. 43(9B), 6667–6671 (2004).
[Crossref]

Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms (1)

V. Mürk, V. Denks, A. Dudelzak, P.-P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: Mechanism of creation and bleaching,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 141, 472–476 (1998).

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. (2)

R. P. Feynman, “Slow electrons in a polar crystal,” Phys. Rev. 97(3), 660–665 (1955).
[Crossref]

W. S. Baer, “Free-carrier absorption in reduced SrTiO3,” Phys. Rev. 144(2), 734–738 (1966).
[Crossref]

Phys. Rev. B (1)

G. J. Edwards, M. P. Scripsick, L. E. Halliburton, and R. F. Belt, “Identification of a radiation-induced hole center in KTiOPO4,” Phys. Rev. B 48(10), 6884–6891 (1993).
[Crossref]

Phys. Rev. B Condens. Matter (2)

W. Y. Ching and Y.-N. Xu, “Band structure and linear optical properties of KTiOPO4.,” Phys. Rev. B Condens. Matter 44(10), 5332–5335 (1991).
[Crossref] [PubMed]

D. Emin, “Optical properties of large and small polarons and bipolarons,” Phys. Rev. B Condens. Matter 48(18), 13691–13702 (1993).
[Crossref] [PubMed]

Phys. Z. Sowjetunion (1)

L. D. Landau, “Über die Bewegung der Elektronen in Kristallgitter,” Phys. Z. Sowjetunion 3, 644–645 (1933).

Sci. Rep. (1)

H. Sezen, M. Buchholz, A. Nefedov, C. Natzeck, S. Heissler, C. Di Valentin, and C. Wöll, “Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states,” Sci. Rep. 4, 3808 (2014).
[Crossref] [PubMed]

Other (2)

C. A. Ebbers and S. P. Velsko, “Optical and thermo-optical characterization of KTP and its isomorphs for 1.06 im pumped OPO’s,” in Photonics West ’96, M. C. Gupta, W. J. Kozlovsky, and D. C. MacPherson, eds. (International Society for Optics and Photonics, 1996), pp. 227–239.

K. Seeger, Semicondictor Physics, 2nd ed. (Springer-Verlag, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the common-path interferometer employed to measure the thermal lens induced by BLIIRA.

Fig. 2
Fig. 2

Absorption at 1.04 µm measured as the 398 nm excitation beam was switched on at t = 0 min and switched of at t = 50 min. T = 25 °C. (a) PP-KTP and PP-Rb:KTP, (b) PP-RTP, (c) PP-KTA, (d) PP-RTA.

Fig. 3
Fig. 3

Remnant absorption normalized to the maximum induced absorption. The samples were exposed to the blue light with an average power of 3 mW and pulse duration of 30 ps for ~50 minutes followed by a relaxation time of ~50 minutes.

Fig. 4
Fig. 4

(a). Remnant induced infrared absorption as a function of total exposure time to the blue light. (b). Remnant induced infrared absorption normalized to the maximum absorption as a function of crystal temperature. The samples were exposed to the blue light with an average power of 3 mW and pulse duration of 30 ps for ~10 minutes followed by a relaxation time of ~20 minutes.

Fig. 5
Fig. 5

BLIIRA traces measured at different crystal temperatures. KTP (a), KTA (b). The samples were exposed to the blue light with an average power of 3 mW and a pulse duration of 30 ps for ~10 minutes followed by a relaxation time of ~20 minutes.

Fig. 6
Fig. 6

(a) BLIIRA after 50 min of exposure to 30 ps long pulses of the blue light, αmax (solid symbols), and at the end of 50 min of relaxation at 25 °C, αend (open symbols), as a function of average power of the blue light at 398 nm. Absorption coefficients normalized to the αmax at 1 mW of the blue power for each isomorph. (b) Room temperature fluorescence spectrum measured in RTA.

Tables (1)

Tables Icon

Table 1 Measured sample parameters: ionic conductivity (σ) along the c-axis, poling period, absorption coefficient at the excitation wavelength (398 nm) and the absorption coefficient at pump wavelength (1.04 µm). These absorption coefficients apply to linearly polarized light propagating along the a-axis with the electric field parallel to the c-axis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α sample = α BK7 S sample S BK7 ( dn / dT ) BK7 κ sample L BK7 ( dn / dT ) sample κ BK7 L sample ,
α( t )= α end + A slow e (t t 0 ) / τ slow + A fast e (t t 0 ) / τ fast ,
V 0 = e 2 2 a pol 4π ε 0 ( 1 ε() 1 ε(0) )
a pol = 4π 2 ε 0 e 2 m c ( 1 ε() 1 ε(0) ) 1 .
m c m 0 = E g 2( 2 / m 0 ) (π/c) 2 + E g .

Metrics