Abstract

Frequency conversion of continuous wave beams was observed for the first time in orientation patterned gallium phosphide (OP-GaP) through difference frequency generation of 3400.5 nm light from mixing of 1064.6 nm and 1549.8 nm fiber laser beams. The dependence of the power of the generated beam on the polarization states of the two incident beams was studied theoretically and experimentally.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance characterization of mid-infrared difference-frequency-generation in orientation-patterned gallium phosphide

Junxiong Wei, S. Chaitanya Kumar, Hanyu Ye, P. G. Schunemann, and M. Ebrahim-Zadeh
Opt. Mater. Express 8(3) 555-567 (2018)

Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals

Giacomo Insero, Cecilia Clivati, Davide D’Ambrosio, Paolo De Natale, Gabriele Santambrogio, Peter G. Schunemann, Jean-Jacques Zondy, and Simone Borri
Opt. Lett. 41(21) 5114-5117 (2016)

Picosecond difference-frequency-generation in orientation-patterned gallium phosphide

J. C. Casals, S. Parsa, S. Chaitanya Kumar, K. Devi, P. G. Schunemann, and M. Ebrahim-Zadeh
Opt. Express 25(16) 19595-19602 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
    [Crossref]
  2. T. Matsushita, T. Yamamoto, and T. Kondo., “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46(2), L408–L410 (2007).
    [Crossref]
  3. D. F. Parsons and P. D. Coleman, “Far Infrared Optical Constants of Gallium Phosphide,” Appl. Opt. 10(7), 1683–1685 (1971).
    [Crossref]
  4. P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).
  5. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202(May), 187–193 (1999).
    [Crossref]
  6. O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).
  7. S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
    [Crossref]
  8. S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228(July), 183–192 (2001).
    [Crossref]
  9. A. C. Lin, “All-Epitaxial orientation-patterned III–V semiconductors for nonlinear optics,” Ph.D. Dissertation, Stanford University (2012).
  10. A. C. Lin, M. M. Fejer, and J. S. Harris., “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363(January), 258–263 (2013).
    [Crossref]
  11. S. Guha, J. O. Barnes, and L. P. Gonzalez, “Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate,” Opt. Lett. 39(17), 5018–5021 (2014).
    [Crossref] [PubMed]
  12. P. S. Kuo, “Thick film, orientation-patterned Gallium Arsenide for nonlinear optical frequency conversion,” Ph.D. Dissertation, Stanford University (2008).
  13. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32(18), 2735–2737(2007).
    [Crossref]

2015 (1)

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

2014 (1)

2013 (1)

A. C. Lin, M. M. Fejer, and J. S. Harris., “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363(January), 258–263 (2013).
[Crossref]

2007 (2)

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32(18), 2735–2737(2007).
[Crossref]

T. Matsushita, T. Yamamoto, and T. Kondo., “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46(2), L408–L410 (2007).
[Crossref]

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

2001 (1)

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228(July), 183–192 (2001).
[Crossref]

1999 (2)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202(May), 187–193 (1999).
[Crossref]

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

1971 (1)

Barnes, J. O.

Becouam, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

Becouarn, L.

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Bisson, S.

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Bliss, D. F.

Coleman, P. D.

Ebert, C. B.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202(May), 187–193 (1999).
[Crossref]

Ebihara, M.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202(May), 187–193 (1999).
[Crossref]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Fejer, M. M.

A. C. Lin, M. M. Fejer, and J. S. Harris., “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363(January), 258–263 (2013).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32(18), 2735–2737(2007).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202(May), 187–193 (1999).
[Crossref]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Gonzalez, L. P.

Guha, S.

Harris, J. S.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32(18), 2735–2737(2007).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202(May), 187–193 (1999).
[Crossref]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Harris., J. S.

A. C. Lin, M. M. Fejer, and J. S. Harris., “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363(January), 258–263 (2013).
[Crossref]

Ichinose, H.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Ishiwada, T.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Ito, R.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228(July), 183–192 (2001).
[Crossref]

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Koh, S.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228(July), 183–192 (2001).
[Crossref]

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Kondo, T.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228(July), 183–192 (2001).
[Crossref]

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Kondo., T.

T. Matsushita, T. Yamamoto, and T. Kondo., “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46(2), L408–L410 (2007).
[Crossref]

Kulp, T. J.

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Kuo, P. S.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32(18), 2735–2737(2007).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

P. S. Kuo, “Thick film, orientation-patterned Gallium Arsenide for nonlinear optical frequency conversion,” Ph.D. Dissertation, Stanford University (2008).

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Lin, A. C.

A. C. Lin, M. M. Fejer, and J. S. Harris., “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363(January), 258–263 (2013).
[Crossref]

A. C. Lin, “All-Epitaxial orientation-patterned III–V semiconductors for nonlinear optics,” Ph.D. Dissertation, Stanford University (2012).

Magarrell, D. J.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

Matsushita, T.

T. Matsushita, T. Yamamoto, and T. Kondo., “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46(2), L408–L410 (2007).
[Crossref]

Parsons, D. F.

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Pomeranz, L. A.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

Sawada, H.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Scaccabarozzi, L.

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Schunemann, P. G.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

Shiraki, Y.

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228(July), 183–192 (2001).
[Crossref]

Shoji, I.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

Vodopyanov, K. L.

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32(18), 2735–2737(2007).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

Weyburne, D.

Yamamoto, T.

T. Matsushita, T. Yamamoto, and T. Kondo., “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46(2), L408–L410 (2007).
[Crossref]

Yu, X.

Appl. Opt. (1)

J. Cryst. Growth (3)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris, “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202(May), 187–193 (1999).
[Crossref]

S. Koh, T. Kondo, Y. Shiraki, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices,” J. Cryst. Growth 227–228(July), 183–192 (2001).
[Crossref]

A. C. Lin, M. M. Fejer, and J. S. Harris., “Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy,” J. Cryst. Growth 363(January), 258–263 (2013).
[Crossref]

Journ. Appl. Phys. (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouam, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” Journ. Appl. Phys.,  94(10), 6447–6455 (2003).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Matsushita, T. Yamamoto, and T. Kondo., “Epitaxial growth of spatially inverted GaP for quasi phase matched nonlinear optical devices,” Jpn. J. Appl. Phys. 46(2), L408–L410 (2007).
[Crossref]

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sub-lattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys.)  38 (Part 2, No. 5A), L508–L511 (1999).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

Other (3)

A. C. Lin, “All-Epitaxial orientation-patterned III–V semiconductors for nonlinear optics,” Ph.D. Dissertation, Stanford University (2012).

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, L. Scaccabarozzi, M. M. Fejer, J. S. Harris, T. J. Kulp, S. Bisson, B. Gerard, L. Becouarn, and E. Lallier, “Mid-infrared generation by difference-frequency mixing in orientation-patterned GaAs,” Conference on Lasers and Electro-Optics, OSA Trends in Optics and Photonics (TOPS) Vol. 56, Optical Society of America, Baltimore, MA, (2001).

P. S. Kuo, “Thick film, orientation-patterned Gallium Arsenide for nonlinear optical frequency conversion,” Ph.D. Dissertation, Stanford University (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The calculated values of grating period in OP-GaAs and OP-GaP as a function of idler and pump wavelengths, (λ1 and λ3, respectively) for signal wavelength λ2 = 1.55 μm, at temperature 295 K. The vertical line is drawn at λ3 = 1.064 and λ1 = 3.400 μm.
Fig. 2
Fig. 2 Polished and etched cross-section of OP-GaP crystal used for this work. The 20.8 μm grating propagation was limited to 150 μm due to a growth interruption.
Fig. 3
Fig. 3 The reflectivities of the two sides of the AR coated crystals shown by the blue and red dashed lines.
Fig. 4
Fig. 4 The set-up for the difference frequency mixing experiment.
Fig. 5
Fig. 5 Picture of the oven on which the OP-GaP crystal was mounted.
Fig. 6
Fig. 6 The generated idler beam at 3.39 μm.
Fig. 7
Fig. 7 Orientation of alternate layers in the patterned structure. The body diagonal [111̄] is perpendicular to the propagation direction [ 0 11 ¯] and lies on the incident (and exit) face of the crystal.
Fig. 8
Fig. 8 The dependence of the direction of the idler polarization and the (deff/d14)2 values on the directions of the pump and signal polarization, when both the pump and signal beams are linear polarized.
Fig. 9
Fig. 9 The direction of the idler polarization and the (deff/d14)2 values for circular or random polarized pump beam and linear polarized signal beam.
Fig. 10
Fig. 10 The direction of the idler polarization and the (deff/d14)2 values for circular or random polarized pump and signal beams.
Fig. 11
Fig. 11 Experimentally measured idler beam power as a function of ψ2, the angle between the signal beam and the [100] direction, for different polarization states of the pump beam. (a) Linear polarized pump, withψ3 = 0; (b) Linear polarized pump, with ψ 3 = tan 1 2; (c) Linear polarized pump, with ψ3 = 90°; (d) Circular polarized pump. In each case, the solid lines show the theoretically predicted dependence of the idler beam power on ψ2.

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

P 1 = P 2 P 3 P DF h 1
P DF c ε 0 n 3 2 λ 1 λ 2 2 32 π 2 d eff 2
u ^ 1 = ( Y ^ Z ^ ) 2
u ^ 2 = X ^
e ^ 3 = e i β 3 cos ψ 3 X ^ + sin ψ 3 ( Y ^ Z ^ ) 2
e ^ 2 = e i β 2 cos ψ 2 X ^ + sin ψ 2 ( Y ^ Z ^ ) 2
P 1 X = 4 ε 0 d 14 ( E 3 Y E 2 Z * + E 3 Z E 2 Y * ) P 1 Y = 4 ε 0 d 25 ( E 3 Z E 2 X * + E 3 X E 2 Z * ) P 1 Z = 4 ε 0 d 36 ( E 3 X E 2 Y * + E 3 X E 2 Z * ) .
P 1 u 1 = P 1 u ^ 1 P 1 u 2 = P 1 u ^ 2
P u = P 1 u 1 u ^ 1 + P 1 u 2 u ^ 2 .
A X = e 3 Y e 2 Z * + e 3 Z e 2 Y * A Y = e 3 Y e 2 Z * + e 3 Z e 2 Y * A Z = e 3 Y e 2 Z * + e 3 Z e 2 Y *
A u 1 = A u ^ 1 A u 2 = A u ^ 2 .
A u = A u 1 u ^ 1 + A u 2 u ^ 2
e ^ 1 = A u 1 | A u 1 | 2 + | A u 2 | 2 u ^ 1 + A u 2 | A u 1 | 2 + | A u 2 | 2 u ^ 2 .
A u 1 = sin ψ 3 cos ψ 2 e i β 2 cos ψ 3 sin ψ 2 e i β 3 A u 2 = sin ψ 2 sin ψ 3 .
e ^ 1 = sin ψ 3 sin ψ 2 δ X ^ sin ψ 3 cos ψ 2 e i β 2 + cos ψ 3 sin ψ 2 e i β 3 δ ( Y ^ Z ^ ) 2
δ ( d eff d 14 ) = { sin 2 ψ 3 + cos 2 ψ 3 sin 2 ψ 2 + 1 2 sin 2 ψ 3 sin 2 ψ 2 cos ( β 2 + β 3 ) } 1 / 2 .
δ 2 = ( d eff d 14 ) 2 = sin 2 ( ψ 3 + ψ 2 ) + sin 2 ψ 3 sin 2 ψ 2
e ^ 1 = sin ψ 3 sin ψ 2 sin 2 ( ψ 3 + ψ 2 ) + sin 2 ψ 3 sin 2 ψ 2 X ^ sin ( ψ 3 + ψ 2 ) sin 2 ( ψ 3 + ψ 2 ) + sin 2 ψ 3 sin 2 ψ 2 ( Y ^ Z ^ ) 2 .
e ^ 1 = sin ψ 2 X ^ cos ψ 2 ( Y ^ Z ^ ) 2
e ^ 1 = sin ψ 2 1 + sin 2 ψ 2 X ^ ( cos ψ 2 i sin ψ 2 ) 1 + sin 2 ψ 2 ( Y ^ Z ^ ) 2 .
δ 2 = ( d eff d 14 ) 2 = 1 + sin 2 ψ 2 2 .
e ^ 1 = sin ψ 2 1 + sin 2 ψ 2 X ^ ( cos ψ 2 i sin ψ 2 e i β 3 ) 1 + sin 2 ψ 2 ( Y ^ Z ^ ) 2 .
δ 2 = 1 + sin 2 ψ 2 2 .
| e ^ 1 u 1 | 2 = sin 2 ψ 2 1 + sin 2 ψ 2
| e ^ 1 u 2 | 2 = 1 1 + sin 2 ψ 2
δ 2 = 1.25
e ^ 1 = 1 2 δ X ^ i δ ( Y ^ Z ^ ) 2 .
| e ^ 1 u 1 | 2 = 1 δ 2 = 4 5
| e ^ 1 u 2 | 2 = 1 4 δ 2 = 1 5
δ 2 = 0.25
e ^ 1 = X ^
δ 2 = 0.75
e ^ 1 = 1 2 δ X ^ e i β 3 i 2 δ ( Y ^ Z ^ ) 2 .
| e ^ 1 u 1 | 2 = 2 4 δ 2 = 2 3
| e ^ 1 u 2 | 2 = 1 4 δ 2 = 1 3
δ 2 = 0.75
e ^ 1 = 1 2 δ X ^ e i β 3 + e i β 2 2 δ ( Y ^ Z ^ ) 2 .
| e ^ 1 u 1 | 2 = 2 4 δ 2 = 2 3
| e ^ 1 u 2 | 2 = 1 4 δ 2 = 1 3

Metrics