Abstract

We report the use of epsilon near zero (ENZ) metamaterial to control spontaneous emission from Zinc-Oxide (ZnO) excitons. The ENZ material consists of alternating layers of silver and alumina with subwavelength thicknesses, resulting in an effective medium where one of the components of the dielectric constant approach zero between 370nm-440nm wavelength range. Bulk ZnO with photoluminescence maximum in the ENZ regime was deposited via atomic layer deposition to obtain a smooth film with near field coupling to the ENZ metamaterial. Preferential emission from the ZnO layer into the metamaterial with suppression of forward emission by 90% in comparison to ZnO on silicon is observed. We attribute this observation to the presence of dispersionless plasmonic modes in the ENZ regime as shown by the results of theoretical modeling presented here. Integration of ENZ metamaterials with light emitters is an attractive platform for realizing a low threshold subwavelength laser.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexandra Boltasseva and Jennifer Dionne, "Plasmonics feature issue: publisher’s note," Opt. Mater. Express 5, 2978-2978 (2015)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-5-12-2978

24 November 2015: A correction was made to the title.


OSA Recommended Articles
Ultraviolet photoluminescence of ZnO quantum dots sputtered at room-temperature

Gillian Kiliani, Reinhard Schneider, Dimitri Litvinov, Dagmar Gerthsen, Mikhail Fonin, Ulrich Rüdiger, Alfred Leitenstorfer, and Rudolf Bratschitsch
Opt. Express 19(2) 1641-1647 (2011)

Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko
Opt. Mater. Express 7(5) 1606-1627 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref] [PubMed]
  2. Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
    [Crossref] [PubMed]
  3. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  4. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  5. G. Subramania, J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
    [Crossref]
  6. N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
    [Crossref] [PubMed]
  7. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
    [Crossref] [PubMed]
  8. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
    [Crossref] [PubMed]
  9. P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
    [Crossref] [PubMed]
  10. A. V. Goncharenko and A. O. Pinchuk, “Broadband epsilon-near-zero composites made of metal nanospheroids,” Opt. Mater. Express 4(6), 1276 (2014).
    [Crossref]
  11. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
    [Crossref]
  12. C. L. Cortes and Z. Jacob, “Photonic analog of a van Hove singularity in metamaterials,” Phys. Rev. B 88(4), 045407 (2013).
    [Crossref]
  13. L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
    [Crossref] [PubMed]
  14. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  15. N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
    [Crossref] [PubMed]
  16. W. Chen, K. P. Chen, M. D. Thoreson, V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97(21), 211107 (2010).
    [Crossref]
  17. W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials,” J. Opt. Soc. Am. B 30(4), 766 (2013).
    [Crossref]
  18. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging (invited paper),” J. Opt. Soc. Am. B 23(3), 391 (2006).
    [Crossref]
  19. E. M. L. L. D. Landau and L. P. Pitaevskii, Course of Theoretical Physics, 2nd, Vol. (Reed, 1984).
  20. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [Crossref]
  21. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  22. P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
    [Crossref]
  23. D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
    [Crossref] [PubMed]
  24. M. G. Silveirinha, A. Alù, B. Edwards, and N. Engheta, “Overview of theory and applications of epsilon-near-zero materials,” URSI General Assembly (Chicago, IL, 2008).

2014 (3)

2013 (7)

W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials,” J. Opt. Soc. Am. B 30(4), 766 (2013).
[Crossref]

C. L. Cortes and Z. Jacob, “Photonic analog of a van Hove singularity in metamaterials,” Phys. Rev. B 88(4), 045407 (2013).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
[Crossref] [PubMed]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

2012 (4)

G. Subramania, J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

2011 (1)

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

2010 (1)

W. Chen, K. P. Chen, M. D. Thoreson, V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97(21), 211107 (2010).
[Crossref]

2009 (2)

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
[Crossref]

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

2008 (2)

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

2006 (1)

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Adams, D. C.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, B. Edwards, and N. Engheta, “Overview of theory and applications of epsilon-near-zero materials,” URSI General Assembly (Chicago, IL, 2008).

Ankonina, G.

Atrashchenko, A.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Belov, P. A.

Boltasseva, A.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Brener, I.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Chaturvedi, N. X.

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Chen, K. P.

W. Chen, K. P. Chen, M. D. Thoreson, V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97(21), 211107 (2010).
[Crossref]

Chen, W.

W. Chen, K. P. Chen, M. D. Thoreson, V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97(21), 211107 (2010).
[Crossref]

Cortes, C. L.

C. L. Cortes and Z. Jacob, “Photonic analog of a van Hove singularity in metamaterials,” Phys. Rev. B 88(4), 045407 (2013).
[Crossref]

W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials,” J. Opt. Soc. Am. B 30(4), 766 (2013).
[Crossref]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Dewalt, C. J.

Dickson, W.

Dignam, M. M.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
[Crossref]

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, B. Edwards, and N. Engheta, “Overview of theory and applications of epsilon-near-zero materials,” URSI General Assembly (Chicago, IL, 2008).

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, B. Edwards, and N. Engheta, “Overview of theory and applications of epsilon-near-zero materials,” URSI General Assembly (Chicago, IL, 2008).

Fang, S. Y.

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Ferrari, L.

Fischer, J.

G. Subramania, J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Fullerton, E. E.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Ginzburg, P.

Goncharenko, A. V.

Goodhue, W. D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Greffet, J.-J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Hughes, S.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
[Crossref]

Inampudi, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Iorsh, I.

Islam, W.

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Jacob, Z.

W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials,” J. Opt. Soc. Am. B 30(4), 766 (2013).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
[Crossref] [PubMed]

C. L. Cortes and Z. Jacob, “Photonic analog of a van Hove singularity in metamaterials,” Phys. Rev. B 88(4), 045407 (2013).
[Crossref]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Jun, Y. C.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Kan, J. J.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Kildishev, V.

W. Chen, K. P. Chen, M. D. Thoreson, V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97(21), 211107 (2010).
[Crossref]

Kivshar, Y. S.

Kobayashi, M. S.

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Kuhta, N. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Lepage, D.

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, Z.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
[Crossref] [PubMed]

Logeeswaran Vj, N. P.

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Lu, D.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
[Crossref] [PubMed]

Luk, T. S.

G. Subramania, J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Marquier, F.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Molesky, S.

Morgan, F.

Murphy, A.

Naik, G. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Nevet, A.

Newman, W.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Newman, W. D.

Orenstein, M.

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Patterson, M.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
[Crossref]

Pendry, J. B.

Pinchuk, A. O.

Podolskiy, V. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Pollard, R. J.

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Reno, J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Reza, A.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
[Crossref]

Ribaudo, T.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Rodríguez Fortuño, F. J.

Shalaev, V. M.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

W. Chen, K. P. Chen, M. D. Thoreson, V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97(21), 211107 (2010).
[Crossref]

Shaner, E.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha, A. Alù, B. Edwards, and N. Engheta, “Overview of theory and applications of epsilon-near-zero materials,” URSI General Assembly (Chicago, IL, 2008).

Sinclair, M.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Slocum, D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Smith, D. R.

Subramania, G.

G. Subramania, J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Thoreson, M. D.

W. Chen, K. P. Chen, M. D. Thoreson, V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97(21), 211107 (2010).
[Crossref]

Van Vlack, C.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
[Crossref]

Vangala, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Vassant, S.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Wang,

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Wasserman, D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Williams, R. S.

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Wu, P.

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Wurtz, G. A.

Yao, P.

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Zayats, A. V.

Appl. Phys. Lett. (2)

G. Subramania, J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

W. Chen, K. P. Chen, M. D. Thoreson, V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett. 97(21), 211107 (2010).
[Crossref]

J. Opt. (1)

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

Nano Lett. (2)

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

N. P. Logeeswaran Vj, M. S. Kobayashi, W. Islam, P. Wu, N. X. Chaturvedi, S. Y. Fang, Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9(1), 178–182 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Phys. Rev. B (2)

P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009).
[Crossref]

C. L. Cortes and Z. Jacob, “Photonic analog of a van Hove singularity in metamaterials,” Phys. Rev. B 88(4), 045407 (2013).
[Crossref]

Phys. Rev. Lett. (2)

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 107(13), 133901 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Science (2)

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Other (2)

E. M. L. L. D. Landau and L. P. Pitaevskii, Course of Theoretical Physics, 2nd, Vol. (Reed, 1984).

M. G. Silveirinha, A. Alù, B. Edwards, and N. Engheta, “Overview of theory and applications of epsilon-near-zero materials,” URSI General Assembly (Chicago, IL, 2008).

Supplementary Material (4)

NameDescription
» Data File 1: CSV (8 KB)      S1 - optical constants of thin film Ag
» Data File 2: CSV (8 KB)      S2 - optical constants of thin film Al2O3
» Visualization 1: AVI (13209 KB)      S3 - emission wavelength scan of horizontal dipole above MM
» Visualization 2: AVI (12685 KB)      S4 - emission wavelength scan of vertical dipole above MM

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Cross section of 4P structure imaged by transmission electron microscope (TEM). Ag shows as dark stripes, Al2O3 as bright, bottom most layer is Si substrate, topmost layer is a protective Pt layer which is deposited as a part of the cross-sectioning process. (b) Effective permittivity components of the metamaterial. Calculated using optical constants on thin layer Ag and Al2O3 obtained from ellipsometry (see Data File 1 and Data File 2). Region I: Type I hyperbolic dispersion, Region II: Elliptical dispersion, Region III: ENZ regime, Region IV: Type II hyperbolic dispersion. Dashed line marks the emission peak of ZnO.
Fig. 2
Fig. 2 (a) Photoluminescence (PL) spectrum of electron-beam grown ZnO on Si substrate; inset: SEM image of the sample surface. (b) PL spectrum ZnO grown by ALD. Inset: SEM image of sample surface. (c) Atomic Forace Micosrocope micrograph of the ALD grown sample with a maximum peak to valley roughness of 0.3nm.
Fig. 3
Fig. 3 (a) PL spectrum of ZnO on 4P, 1P, and bare Si, normalized to the PL intensity of ZnO on Si. (b) Schematic of experimental setup for measuring the PL signal.
Fig. 4
Fig. 4 (a) Wavelength resolved local photonic density of states (WLDOS). The areas where the slope of bright curves begin to flatten are slow modes in the ENZ regime. (b) Simulations of electric field (arb. units) emitted by a dipole embedded in a ZnO layer on top of the 4P metamaterial at three wavelength corresponding to three areas of dispersion, Top: Elliptical (320nm), Middle: ENZ (380nm), Bottom: Hyperbolic (500nm). Inset in middle: radiation of ZnO on Si substrate. See Visualization 1 and Visualization 2 for continuous scan between 300 and 600nm.

Metrics