Abstract

We study the plane wave scattering on a planar periodic array of silver dimers. It is found that an appropriately designed array provides the sharp turn of TE-polarized incident beam in orthogonal (opposite) directions through the effects of negative-angle refraction (reflection).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers

Gary F. Walsh, Carlo Forestiere, and Luca Dal Negro
Opt. Express 19(21) 21081-21090 (2011)

Angle-resolved reflectance of obliquely aligned silver nanorods

X. J. Wang, J. L. Abell, Y.-P. Zhao, and Z. M. Zhang
Appl. Opt. 51(10) 1521-1531 (2012)

Vapor-deposited thin films with negative real refractive index in the visible regime

Yi-Jun Jen, Akhlesh Lakhtakia, Ching-Wei Yu, and Chin-Te Lin
Opt. Express 17(10) 7784-7789 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Materials 13, 139–150 (2014).
    [Crossref] [PubMed]
  2. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  3. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427(2012).
    [Crossref]
  4. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
    [Crossref] [PubMed]
  5. J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
    [Crossref] [PubMed]
  6. A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
    [Crossref] [PubMed]
  7. A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
    [Crossref]
  8. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  9. B. Lukyanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
    [Crossref]
  10. J. Kottmann and O. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
    [Crossref] [PubMed]
  11. P. Vorobev, “Electric field enhancement between two parallel cylinders due to plasmonic resonance,” Journal of Experimental and Theoretical Physics 110, 193–198 (2010).
    [Crossref]
  12. V. E. Babicheva, S. S. Vergeles, P. E. Vorobev, and S. Burger, “Localized surface plasmon modes in a system of two interacting metallic cylinders,” JOSA B 29, 1263–1269 (2012).
    [Crossref]
  13. S. Belan and S. Vergeles, “Plasmon mode propagation in array of closely spaced metallic cylinders,” Opt. Mater. Express 5, 130–141 (2015).
    [Crossref]

2015 (2)

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

S. Belan and S. Vergeles, “Plasmon mode propagation in array of closely spaced metallic cylinders,” Opt. Mater. Express 5, 130–141 (2015).
[Crossref]

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Materials 13, 139–150 (2014).
[Crossref] [PubMed]

2012 (4)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427(2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
[Crossref]

V. E. Babicheva, S. S. Vergeles, P. E. Vorobev, and S. Burger, “Localized surface plasmon modes in a system of two interacting metallic cylinders,” JOSA B 29, 1263–1269 (2012).
[Crossref]

2011 (2)

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

P. Vorobev, “Electric field enhancement between two parallel cylinders due to plasmonic resonance,” Journal of Experimental and Theoretical Physics 110, 193–198 (2010).
[Crossref]

2006 (1)

B. Lukyanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
[Crossref]

2001 (1)

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Babicheva, V. E.

V. E. Babicheva, S. S. Vergeles, P. E. Vorobev, and S. Burger, “Localized surface plasmon modes in a system of two interacting metallic cylinders,” JOSA B 29, 1263–1269 (2012).
[Crossref]

Belan, S.

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427(2012).
[Crossref]

Burger, S.

V. E. Babicheva, S. S. Vergeles, P. E. Vorobev, and S. Burger, “Localized surface plasmon modes in a system of two interacting metallic cylinders,” JOSA B 29, 1263–1269 (2012).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Materials 13, 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Chen, W. T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Chui, S.

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Du, J.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427(2012).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gan, F.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

He, Q.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Ivanov, A.

A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427(2012).
[Crossref]

Kottmann, J.

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Lebedev, V.

A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
[Crossref]

Li, H.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Liao, C. Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Lin, Z.

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Lu, W.

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Lukyanchuk, B.

B. Lukyanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
[Crossref]

Martin, O.

Ni, X.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427(2012).
[Crossref]

Sarychev, A.

A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
[Crossref]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427(2012).
[Crossref]

Shalygin, A.

A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
[Crossref]

Sheng, Z.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Sun, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Ternovsky, V.

B. Lukyanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Vergeles, S.

Vergeles, S. S.

V. E. Babicheva, S. S. Vergeles, P. E. Vorobev, and S. Burger, “Localized surface plasmon modes in a system of two interacting metallic cylinders,” JOSA B 29, 1263–1269 (2012).
[Crossref]

Vergiles, S.

A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
[Crossref]

Vorobev, P.

A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
[Crossref]

P. Vorobev, “Electric field enhancement between two parallel cylinders due to plasmonic resonance,” Journal of Experimental and Theoretical Physics 110, 193–198 (2010).
[Crossref]

Vorobev, P. E.

V. E. Babicheva, S. S. Vergeles, P. E. Vorobev, and S. Burger, “Localized surface plasmon modes in a system of two interacting metallic cylinders,” JOSA B 29, 1263–1269 (2012).
[Crossref]

Wang, C.-M.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Wang, X.

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Wang, Y.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

Wu, A.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Yang, K.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Ye, Z.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Materials 13, 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zhang, X.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

Zi, J.

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Zou, S.

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Appl. Phys. A (1)

A. Ivanov, A. Shalygin, V. Lebedev, P. Vorobev, S. Vergiles, and A. Sarychev, “Plasmonic extraordinary transmittance in array of metal nanorods,” Appl. Phys. A 107, 17–21 (2012).
[Crossref]

JOSA B (1)

V. E. Babicheva, S. S. Vergeles, P. E. Vorobev, and S. Burger, “Localized surface plasmon modes in a system of two interacting metallic cylinders,” JOSA B 29, 1263–1269 (2012).
[Crossref]

Journal of Experimental and Theoretical Physics (1)

P. Vorobev, “Electric field enhancement between two parallel cylinders due to plasmonic resonance,” Journal of Experimental and Theoretical Physics 110, 193–198 (2010).
[Crossref]

Nano Lett. (2)

A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, and et al., “Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts,” Nano Lett. 15, 2055–2060 (2015).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, and et al., “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Nature Materials (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Materials 13, 139–150 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

B. Lukyanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. Du, Z. Lin, S. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and et al., “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427(2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Periodic array of cylinder dimers with longitudinal (a) and transversal (b) orientation of unit cell. (c): TE-wave scattering on array of pairs of nanocylinders in the case L = λ / 2 , θ = 45 °. The yellow arrows schematically indicate the permitted directions of the outgoing waves, which correspond to the 0th and −1st diffraction orders.
Fig. 2
Fig. 2 A sketch of the electrical charge distribution for the two lowest plasmonic modes which are magnetic dipole (a) and electric dipole (b) oscillations in a pair of closely spaced cylinders. (c) The dimer consisting of metal rods with quasi-square cross section.
Fig. 3
Fig. 3 (a) and (c): The distribution of Hz-component demonstrates the negative-angle refraction and reflection phenomena. Neighbouring dimers are exited in anti-phase. (b) and (d): The corresponding distribution of electric field in the gap region. Excited modes are the lowest plasmonic modes in dimer, see Figs. 2(a) and 2(b).
Fig. 4
Fig. 4 (a) The efficiency of negative-angle refraction (reflection) as a function of incidence angle θ for the following parameters: λ = 440 nm, L = λ / 2, R = 53 nm and h = 1.9 nm (λ = 440 nm, L = λ / 2, R = 110 nm and h = 4.0 nm). (b) The ratio of dielectric permittivities εthnum as a function of ratio R/h, where εth is given by the Eq. (1), and εnum is the silver permittivity extracted from [8].

Tables (1)

Tables Icon

Table 1 The optimal geometrical parameters which provide the highest efficiency for the anomaly transmission and reflection in the lowest part of visible spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε m ( λ ) ε d = h + 2 R h ( h + 4 R ) ,

Metrics