Abstract

Plasmonic metasurfaces are often limited in their application by poor device performance, which is caused - in part - by deviations between fabricated devices and the ideal design. We show in this letter that these deviations are reduced significantly by shape-correction, intra-structure proximity error correction. We show experimentally that the fabrication fidelity alone is not a good indicator of the device quality and that direct measurements of the optical performance are necessary. Our fabrication improvements result in increased optical performance, reaching a measurement fidelity as high as 90%.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexandra Boltasseva and Jennifer Dionne, "Plasmonics feature issue: publisher’s note," Opt. Mater. Express 5, 2978-2978 (2015)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-5-12-2978

24 November 2015: A correction was made to the title.


OSA Recommended Articles
Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties

C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler
Opt. Express 21(1) 594-604 (2013)

Advanced engineering of single-crystal gold nanoantennas

R. Méjard, A. Verdy, O. Demichel, M. Petit, L. Markey, F. Herbst, R. Chassagnon, G. Colas-des-Francs, B. Cluzel, and A. Bouhelier
Opt. Mater. Express 7(4) 1157-1168 (2017)

Demonstration of scattering suppression in retardation-based plasmonic nanoantennas

Michael G. Nielsen, Anders Pors, Rasmus B. Nielsen, Alexandra Boltasseva, Ole Albrektsen, and Sergey I. Bozhevolnyi
Opt. Express 18(14) 14802-14811 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  3. I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer and R. W. Boyd “Strong, spectrally-tunable chirality in diffractive metasurfaces,” accepted for publication in Scientific Reports (2015).
    [Crossref]
  4. N. Lawrence, J. Trevino, and L. Dal Negro, “Control of optical orbital angular momentum by Vogel spiral arrays of metallic nanoparticles,” Opt. Lett. 37(24), 5076–5078 (2012).
    [Crossref] [PubMed]
  5. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  6. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Complete Control of Polarization and Phase of Light with High Efficiency and Sub-wavelength Spatial Resolution,”arXiv:1411.1494 [physics.optics], Faraon (2014).
  7. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  8. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [Crossref] [PubMed]
  9. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  10. F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
    [Crossref]
  11. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
    [Crossref] [PubMed]
  12. L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces,” ACS Nano 8(6), 6390–6399 (2014).
    [Crossref] [PubMed]
  13. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  14. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref] [PubMed]
  15. J. S. Greeneich and T. Van Duzer, “An exposure model for electron-sensitive resists,” IEEE Trans. Electron. Dev. 21(5), 286–299 (1974).
    [Crossref]
  16. P. Rai-Choudhury, Handbook of Microlithogaphy, Micromachining, and Microfabrication. Volume 1: Micorlithogarphy (SPIE Press, 1997).
  17. M. Parikh, “Corrections to proximity effects in electron beam lithography, I. Theory,” J. Appl. Phys. 50(6), 4371 (1979).
    [Crossref]
  18. C. S. Ea and A. D. Brown, “Incorporating a corner correction scheme into enhanced pattern area density proximity effect correction,” J. Vac. Sci. Technol. B 19(5), 1985 (2001).
    [Crossref]
  19. T. Kimpel, M. Schulz, R. Zimmermann, H.-J. Stock and A. Zepka “Model based hybrid proximity effect correction scheme combining dose modulation and shape adjustments,” J. Vac. Sci. Technol. B 29, 06F315 (2011).
  20. L. E. Ocola, “Nanoscale geometry assisted proximity effect correction for electron beam direct write nanolithography,” J. Vac. Sci. Technol. B 27(6), 2569 (2009).
    [Crossref]
  21. F. Yesilkoy, C. Kwangsik, M. Dagenais, and M. Peckerar, “Implementation of E-Beam Proximity Effect Correction using linear programming techniques for the fabrication of asymmetric bow-tie antennas,” Solid-State Electron. 54(10), 1211–1215 (2010).
    [Crossref]
  22. R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
    [Crossref]
  23. L. Allen, S. M. Barrnet, and M. J. Padgett, Optical Angular Momentum (Taylor and Francis Group 2003).
  24. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]
  25. L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
    [Crossref]
  26. The error given here is the standard error of the mean, defined as the standard deviation over the square root of the sample size, i.e. σN.
  27. R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
    [Crossref]
  28. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  29. M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
    [Crossref]

2015 (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

2014 (5)

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces,” ACS Nano 8(6), 6390–6399 (2014).
[Crossref] [PubMed]

2013 (2)

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

2010 (1)

F. Yesilkoy, C. Kwangsik, M. Dagenais, and M. Peckerar, “Implementation of E-Beam Proximity Effect Correction using linear programming techniques for the fabrication of asymmetric bow-tie antennas,” Solid-State Electron. 54(10), 1211–1215 (2010).
[Crossref]

2009 (1)

L. E. Ocola, “Nanoscale geometry assisted proximity effect correction for electron beam direct write nanolithography,” J. Vac. Sci. Technol. B 27(6), 2569 (2009).
[Crossref]

2008 (1)

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

2005 (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

2003 (1)

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
[Crossref]

2002 (1)

2001 (1)

C. S. Ea and A. D. Brown, “Incorporating a corner correction scheme into enhanced pattern area density proximity effect correction,” J. Vac. Sci. Technol. B 19(5), 1985 (2001).
[Crossref]

1979 (1)

M. Parikh, “Corrections to proximity effects in electron beam lithography, I. Theory,” J. Appl. Phys. 50(6), 4371 (1979).
[Crossref]

1974 (1)

J. S. Greeneich and T. Van Duzer, “An exposure model for electron-sensitive resists,” IEEE Trans. Electron. Dev. 21(5), 286–299 (1974).
[Crossref]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Arbouet, A.

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces,” ACS Nano 8(6), 6390–6399 (2014).
[Crossref] [PubMed]

Biener, G.

Black, L.-J.

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces,” ACS Nano 8(6), 6390–6399 (2014).
[Crossref] [PubMed]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Boltasseva, A.

Bomzon, Z.

Bouchard, F.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Brown, A. D.

C. S. Ea and A. D. Brown, “Incorporating a corner correction scheme into enhanced pattern area density proximity effect correction,” J. Vac. Sci. Technol. B 19(5), 1985 (2001).
[Crossref]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Busch, K.

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Dagenais, M.

F. Yesilkoy, C. Kwangsik, M. Dagenais, and M. Peckerar, “Implementation of E-Beam Proximity Effect Correction using linear programming techniques for the fabrication of asymmetric bow-tie antennas,” Solid-State Electron. 54(10), 1211–1215 (2010).
[Crossref]

Dal Negro, L.

de Groot, C. H.

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces,” ACS Nano 8(6), 6390–6399 (2014).
[Crossref] [PubMed]

De Leon, I.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Ea, C. S.

C. S. Ea and A. D. Brown, “Incorporating a corner correction scheme into enhanced pattern area density proximity effect correction,” J. Vac. Sci. Technol. B 19(5), 1985 (2001).
[Crossref]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Erni, D.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
[Crossref]

Feth, N.

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gopal, A. V.

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

Greeneich, J. S.

J. S. Greeneich and T. Van Duzer, “An exposure model for electron-sensitive resists,” IEEE Trans. Electron. Dev. 21(5), 286–299 (1974).
[Crossref]

Hasman, E.

Husnik, M.

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jäcke, H.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jungo, M.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
[Crossref]

Karimi, E.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Kats, M. A.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

Klain, M. W.

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Kleiner, V.

König, M.

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Kwangsik, C.

F. Yesilkoy, C. Kwangsik, M. Dagenais, and M. Peckerar, “Implementation of E-Beam Proximity Effect Correction using linear programming techniques for the fabrication of asymmetric bow-tie antennas,” Solid-State Electron. 54(10), 1211–1215 (2010).
[Crossref]

Lan, S.

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

Lawrence, N.

Lin, J.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Linden, S.

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Marruci, L.

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Muskens, O. L.

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces,” ACS Nano 8(6), 6390–6399 (2014).
[Crossref] [PubMed]

Nagali, E.

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Naik, G. V.

Ni, X.

Niegemann, J.

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Ocola, L. E.

L. E. Ocola, “Nanoscale geometry assisted proximity effect correction for electron beam direct write nanolithography,” J. Vac. Sci. Technol. B 27(6), 2569 (2009).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Parikh, M.

M. Parikh, “Corrections to proximity effects in electron beam lithography, I. Theory,” J. Appl. Phys. 50(6), 4371 (1979).
[Crossref]

Patil, R.

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

Peckerar, M.

F. Yesilkoy, C. Kwangsik, M. Dagenais, and M. Peckerar, “Implementation of E-Beam Proximity Effect Correction using linear programming techniques for the fabrication of asymmetric bow-tie antennas,” Solid-State Electron. 54(10), 1211–1215 (2010).
[Crossref]

Piccirillo, B.

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Robin, F.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Sands, T. D.

Santamato, E.

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schroeder, J. L.

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

Sciarrino, F.

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Slussarenko, S.

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Strasser, P.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Trevino, J.

Upham, J.

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Van Duzer, T.

J. S. Greeneich and T. Van Duzer, “An exposure model for electron-sensitive resists,” IEEE Trans. Electron. Dev. 21(5), 286–299 (1974).
[Crossref]

Wang, Y.

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces,” ACS Nano 8(6), 6390–6399 (2014).
[Crossref] [PubMed]

Wegener, M.

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Wüest, R.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
[Crossref]

Yesilkoy, F.

F. Yesilkoy, C. Kwangsik, M. Dagenais, and M. Peckerar, “Implementation of E-Beam Proximity Effect Correction using linear programming techniques for the fabrication of asymmetric bow-tie antennas,” Solid-State Electron. 54(10), 1211–1215 (2010).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

ACS Nano (1)

L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens, “Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces,” ACS Nano 8(6), 6390–6399 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[Crossref]

IEEE Trans. Electron. Dev. (1)

J. S. Greeneich and T. Van Duzer, “An exposure model for electron-sensitive resists,” IEEE Trans. Electron. Dev. 21(5), 286–299 (1974).
[Crossref]

J. Appl. Phys. (1)

M. Parikh, “Corrections to proximity effects in electron beam lithography, I. Theory,” J. Appl. Phys. 50(6), 4371 (1979).
[Crossref]

J. Nanophotonics (1)

R. Patil, S. Lan, and A. V. Gopal, “Fabrication of large-area two-dimensional array of air holes with different hole shapes for optical and terahertz wavelength regions,” J. Nanophotonics 8(1), 083896 (2014).
[Crossref]

J. Opt. (1)

L. Marruci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

J. Vac. Sci. Technol. B (2)

L. E. Ocola, “Nanoscale geometry assisted proximity effect correction for electron beam direct write nanolithography,” J. Vac. Sci. Technol. B 27(6), 2569 (2009).
[Crossref]

C. S. Ea and A. D. Brown, “Incorporating a corner correction scheme into enhanced pattern area density proximity effect correction,” J. Vac. Sci. Technol. B 19(5), 1985 (2001).
[Crossref]

Light Sci. Appl. (1)

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Microelectron. Eng. (1)

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäcke, “An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices,” Microelectron. Eng. 67-68, 182–188 (2003).
[Crossref]

Nano Lett. (2)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Husnik, M. W. Klain, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Solid-State Electron. (1)

F. Yesilkoy, C. Kwangsik, M. Dagenais, and M. Peckerar, “Implementation of E-Beam Proximity Effect Correction using linear programming techniques for the fabrication of asymmetric bow-tie antennas,” Solid-State Electron. 54(10), 1211–1215 (2010).
[Crossref]

Other (6)

L. Allen, S. M. Barrnet, and M. J. Padgett, Optical Angular Momentum (Taylor and Francis Group 2003).

The error given here is the standard error of the mean, defined as the standard deviation over the square root of the sample size, i.e. σN.

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer and R. W. Boyd “Strong, spectrally-tunable chirality in diffractive metasurfaces,” accepted for publication in Scientific Reports (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Complete Control of Polarization and Phase of Light with High Efficiency and Sub-wavelength Spatial Resolution,”arXiv:1411.1494 [physics.optics], Faraon (2014).

T. Kimpel, M. Schulz, R. Zimmermann, H.-J. Stock and A. Zepka “Model based hybrid proximity effect correction scheme combining dose modulation and shape adjustments,” J. Vac. Sci. Technol. B 29, 06F315 (2011).

P. Rai-Choudhury, Handbook of Microlithogaphy, Micromachining, and Microfabrication. Volume 1: Micorlithogarphy (SPIE Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics taken from the electron beam lithography design file of a) an antenna array, b) and individual nanoantenna without PEC and c) a nanoantenna with shape-correction PEC (each little square has 20nm sidelength).

Fig. 2
Fig. 2

a) and c) Histograms of the fabrication fidelity and the area of deviations, respectively. b) and d) Scanning electron microscope images of a representative nanoantenna with (b) and without (d) PEC.

Fig. 3
Fig. 3

Measurement fidelity vs a) the fabrication fidelity and b) the defect area.

Fig. 4
Fig. 4

a) and b), sketch (to scale) of L-antennas with the same fabrication fidelity, but the deviating area (green region) concentrated along one arm (a) or in one corner (b) respectively. c) Purity for the two antennas compared to the ideal nanoantenna with same dimensions, the gray shaded region indicates the wavelength range used during experiments.

Metrics