Abstract

The thermal emission of refractory plasmonic metamaterial – a titanium nitride 1D grating – is studied at high operating temperature (540 °C). By choosing a refractory material, we fabricate thermal gratings with high brightness that are emitting mid-infrared radiation centered around 3 µm. We demonstrate experimentally that the thermal excitation of plasmon-polariton on the surface of the grating produces a well-collimated beam with a spatial coherence length of 32λ (angular divergence of 1.8°) which is quasi-monochromatic with a full width at half maximum of 70 nm. These experimental results show good agreement with a numerical model based on a two-dimensional full-wave analysis in frequency domain.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [Invited]

Shahin Bagheri, Christine M. Zgrabik, Timo Gissibl, Andreas Tittl, Florian Sterl, Ramon Walter, Stefano De Zuani, Audrey Berrier, Thomas Stauden, Gunther Richter, Evelyn L. Hu, and Harald Giessen
Opt. Mater. Express 5(11) 2625-2633 (2015)

Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application

Huacun Wang, Qin Chen, Long Wen, Shichao Song, Xin Hu, and Gaiqi Xu
Photon. Res. 3(6) 329-334 (2015)

Spectral Emittance of Refractory Materials

Henry H. Blau and John R. Jasperse
Appl. Opt. 3(2) 281-285 (1964)

References

  • View by:
  • |
  • |
  • |

  1. M. I. S. Tigran and V. Shahbazyan, Plasmonics: Theory and Applications (Springer, 2013).
  2. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  3. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
    [Crossref]
  4. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
    [Crossref]
  5. I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
    [Crossref]
  6. C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
    [Crossref]
  7. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
    [Crossref]
  8. M. L. Hsieh, J. Bur, Y. S. Kim, and S. Y. Lin, “Direct observation of quasi-coherent thermal emission by a three-dimensional metallic photonic crystal,” Opt. Lett. 38(6), 911–913 (2013).
    [Crossref] [PubMed]
  9. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [Crossref]
  10. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
    [Crossref] [PubMed]
  11. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
    [Crossref]
  12. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  13. K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104(2), 208–216 (2007).
    [Crossref]
  14. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
    [Crossref] [PubMed]
  15. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
    [Crossref] [PubMed]
  16. T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
    [Crossref] [PubMed]
  17. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  18. U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref] [PubMed]
  19. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
    [Crossref]
  20. K. Chen, “Improving plasmonic nanoatennas for optical limiting,” dissertation (Purdue University, West Lafayette, May, 2011).
  21. Z. T. Liu, K. P. Chen, X. J. Ni, V. P. Drachev, V. M. Shalaev, and A. V. Kildishev, “Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence,” J. Opt. Soc. Am. B 27(12), 2465–2470 (2010).
    [Crossref]
  22. U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
    [Crossref] [PubMed]
  23. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  24. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
    [Crossref]
  25. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).

2015 (2)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

2014 (3)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

2013 (2)

T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
[Crossref] [PubMed]

M. L. Hsieh, J. Bur, Y. S. Kim, and S. Y. Lin, “Direct observation of quasi-coherent thermal emission by a three-dimensional metallic photonic crystal,” Opt. Lett. 38(6), 911–913 (2013).
[Crossref] [PubMed]

2012 (2)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

2011 (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (2)

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

2007 (2)

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104(2), 208–216 (2007).
[Crossref]

2005 (1)

2004 (1)

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

2002 (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

2000 (1)

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

1999 (1)

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Arnold, C.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Balin, I.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[Crossref]

Bardou, N.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

Biener, G.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

Boltasseva, A.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

Bur, J.

Carminati, R.

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

Chen, K. P.

Chen, Y.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Collin, S.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

Cornelius, C. M.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Dahan, N.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[Crossref]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Dowling, J. P.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Drachev, V. P.

Feldman, Y.

T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
[Crossref] [PubMed]

Fujimura, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Garin, M.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Gorodetski, Y.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

Greffet, J. J.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Hasman, E.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[Crossref]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

Hatade, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Hsieh, M. L.

Ikeda, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Inoue, Y.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Joulain, K.

K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104(2), 208–216 (2007).
[Crossref]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

Kanakugi, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Karakouz, T.

T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
[Crossref] [PubMed]

Kasaya, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Kildishev, A. V.

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Z. T. Liu, K. P. Chen, X. J. Ni, V. P. Drachev, V. M. Shalaev, and A. V. Kildishev, “Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence,” J. Opt. Soc. Am. B 27(12), 2465–2470 (2010).
[Crossref]

Kim, Y. S.

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kitagawa, S.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Kleiner, V.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[Crossref]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

Laroche, M.

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Lin, S. Y.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Z. T.

Loizeau, A.

K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104(2), 208–216 (2007).
[Crossref]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Marquier, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

Miyazaki, H. T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Ni, X. J.

Niv, A.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Okada, M.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Pardo, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Pelouard, J. L.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

Rubinstein, I.

T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
[Crossref] [PubMed]

Sannomiya, T.

T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Z. T. Liu, K. P. Chen, X. J. Ni, V. P. Drachev, V. M. Shalaev, and A. V. Kildishev, “Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence,” J. Opt. Soc. Am. B 27(12), 2465–2470 (2010).
[Crossref]

Shchegrov, A. V.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Tesler, A. B.

T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
[Crossref] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Vaskevich, A.

T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
[Crossref] [PubMed]

Yamamoto, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Adv. Mater. (1)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92(8), 081913 (2008).
[Crossref]

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010).
[Crossref]

Faraday Discuss. (1)

U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discuss. 178, 71–86 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Ra. (1)

K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104(2), 208–216 (2007).
[Crossref]

Mater. Today (1)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

Nat. Mater. (1)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Nature (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

T. Karakouz, A. B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, and I. Rubinstein, “Mechanism of morphology transformation during annealing of nanostructured gold films on glass,” Phys. Chem. Chem. Phys. 15(13), 4656–4665 (2013).
[Crossref] [PubMed]

Phys. Rev. A (1)

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Phys. Rev. B (4)

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

Phys. Rev. Lett. (2)

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Science (1)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied Physics. Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

Other (3)

K. Chen, “Improving plasmonic nanoatennas for optical limiting,” dissertation (Purdue University, West Lafayette, May, 2011).

M. I. S. Tigran and V. Shahbazyan, Plasmonics: Theory and Applications (Springer, 2013).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematics of the TiN grating structure.Calculated emissivity of a TiN grating as a function of wavelength, along surface normal (b) and emission angle at the wavelength of 3.05 µm (c) . The grating parameters: period, Λ = 3 µm, filling factor, q = w/ Λ = 0.537, height, h = 100 nm, and TiN under layer thickness hb = 50 nm. Same dependencies for reference Au grating with identical geometry: as a function of wavelength (d) and emission angle (e) at the wavelength of 3.013 µm.
Fig. 2
Fig. 2 (a) SEM image of the TiN grating after heated up to 540°C for 32h, the inset shows the tilted view. (b) SEM image of the Au grating after heated up to 400°C for 25h. (c) SEM image of the Au grating after heated up to 540°C for 8h, the inset shows the original structure. (d) Schematic of the experimental setup for thermal emission measurements of TiN grating. BS: KBr beamsplitter, A1,A2: iris apertures.
Fig. 3
Fig. 3 (a) Measured and calculated emissivities as a function of the wavelength for emission angle θ = 0° at 540 °C. (b) Angular profile of emissivity at the wavelength of 3.06 µm vs. calculation.
Fig. 4
Fig. 4 (a) Measured vs. calculated emissivity as a function of the wavelength for θ = 1.8° at 540 °C. (b) Angular profile of the emissivity at the wavelength of (b) 2.96 µm and (c) 3.13 µm.
Fig. 5
Fig. 5 Experimental (black dots) and calculated emissivity (contours) spectrum vs. emission angles. Expanded central area of the plot shown in the inset.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S B ( λ , T 2 ) S R ( λ , T R ) = ( S B ( λ , T 1 ) S R ( λ , T R ) ) P ( λ , T 2 ) P ( λ , T R ) P ( λ , T 1 ) P ( λ , T R )
ε ( λ , T ) = S S ( λ , T ) S R ( λ , T R ) S B ( λ , T ) S R ( λ , T R )

Metrics