Abstract

Fabrication of long period gratings in optical fibers through periodic ablation using a focused CO2 laser beam has been studied. During the thermal ablation process most of the energy is absorbed at the glass surface, due to the high extinction coefficient of silica at the laser wavelength, resulting in rapid increase in temperature. Subsequent heat dissipation occurs through vaporization and ejection of molten material, heat conduction axially along the fiber, radiation and through convection. The high surface temperatures involved during ablation can result in a significant increase in temperature of the fiber itself, causing unwanted off-resonance background losses during grating fabrication. In order to minimize losses the temperature needs to be sufficiently low to avoid micro-bending and core deformation, triggered by the decrease in viscosity, while at the same time enabling strong grating formation through laser induced modification of the glass. In this work we have used short-period fiber Bragg gratings in order to assess the temperature dynamics within the fiber during ablation. Using a single grating written into the core, positioned below the point of ablation, we measure the peak temperature within the core of the fiber. When ablation was performed between two gratings, forming a short Fabry-Perot cavity, a different and faster response was recorded, which we ascribe to thermally induced stress and strain caused by the thermal expansion of the surface during ablation. By identifying suitable processing parameters we successfully fabricate strong long-period gratings with background losses of 0.5 dB to 1 dB when periodically ablating the fiber with up to 50 pulses. Experimental results indicate that the maximum core temperatures during ablation under these conditions are limited to within 600 °C to 1000 °C.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamics of long-period gratings tuned with internal fiber electrodes

Zhangwei Yu, M. Malmström, C. Sterner, O. Tarasenko, W. Margulis, and P.-Y. Fonjallaz
Opt. Lett. 36(5) 633-635 (2011)

Compact eccentric long period grating with improved sensitivity in low refractive index region

Fangcheng Shen, Kaiming Zhou, Neil Gordon, Lin Zhang, and Xuewen Shu
Opt. Express 25(14) 15729-15736 (2017)

Long period fiber grating in two-core hollow eccentric fiber

Tingting Yuan, Xing Zhong, Chunying Guan, Jianan Fu, Jing Yang, Jinhui Shi, and Libo Yuan
Opt. Express 23(26) 33378-33385 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic press, 1999).
  2. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [Crossref]
  4. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
    [Crossref]
  5. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
    [Crossref]
  6. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
    [Crossref] [PubMed]
  7. G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce long-period fibre gratings,” Opt. Commun. 220(1), 111–118 (2003).
    [Crossref]
  8. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
    [Crossref]
  9. B. H. Kim, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U.-C. Paek, and W.-T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41(19), 3809–3815 (2002).
    [Crossref] [PubMed]
  10. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
    [Crossref]
  11. V. Grubsky and J. Feinberg, “Rewritable densification gratings in boron-doped fibers,” Opt. Lett. 30(11), 1279–1281 (2005).
    [Crossref] [PubMed]
  12. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27(7), 857–863 (2009).
    [Crossref]
  13. A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, “Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings,” Appl. Opt. 42(19), 3776–3779 (2003).
    [Crossref] [PubMed]
  14. V. I. Karpov, M. V. Grekov, E. M. Dianov, K. M. Golant, S. A. Vasiliev. O. I. Medvedkov, R. R. Khrapko. Mode-field converters and long-period gratings fabricated by thermo-diffusion in nitrogen-doped silica-core fibers. OFC’98 Technical Digest, ThG4, pp. 279–280.
    [Crossref]
  15. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
    [Crossref]
  16. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St. J. Russell, “Miniature all-fiber devices based on CO(2) laser microstructuring of tapered fibers,” Opt. Lett. 26(15), 1137–1139 (2001).
    [Crossref] [PubMed]
  17. G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259(2), 620–625 (2006).
    [Crossref]
  18. Y. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
    [Crossref]
  19. H. M. Chan, E. Perez, F. Alhassen, I. V. Tomov, and H. P. Lee, “Ultra-Compact Long-Period Fiber Grating and Grating Pair Fabrication Using a Modulation-Scanned CO2 Laser,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD), paper JWA5, 25 March, Anaheim, (2007).
  20. T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
    [Crossref]
  21. A. Harhira, F. Guay, M. Daigle, J. Lapointe, and R. Kashyap, “Long-period fiber gratings fabricated with a CO2 laser beam and phase mask,” Opt. Commun. 283(23), 4633–4638 (2010).
    [Crossref]
  22. P. Holmberg and M. Fokine, “Thermometric study of CO2-laser heated optical fibers in excess of 1700°C using fiber Bragg gratings,” J. Opt. Soc. Am. B 30(7), 1835–1842 (2013).
    [Crossref]

2013 (1)

2010 (1)

A. Harhira, F. Guay, M. Daigle, J. Lapointe, and R. Kashyap, “Long-period fiber gratings fabricated with a CO2 laser beam and phase mask,” Opt. Commun. 283(23), 4633–4638 (2010).
[Crossref]

2009 (1)

2007 (1)

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

2006 (2)

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259(2), 620–625 (2006).
[Crossref]

Y. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

2005 (1)

2004 (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

2003 (2)

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce long-period fibre gratings,” Opt. Commun. 220(1), 111–118 (2003).
[Crossref]

A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, “Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings,” Appl. Opt. 42(19), 3776–3779 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (3)

1999 (1)

1998 (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Ahn, T.-J.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Birks, T. A.

Boudrioua, A.

Boukhenter, A.

Chern, G. W.

Chiang, K. S.

Chung, Y.

Daigle, M.

A. Harhira, F. Guay, M. Daigle, J. Lapointe, and R. Kashyap, “Long-period fiber gratings fabricated with a CO2 laser beam and phase mask,” Opt. Commun. 283(23), 4633–4638 (2010).
[Crossref]

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Dianov, E.

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Dimmick, T. E.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Feinberg, J.

Fernandes, J. R. A.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce long-period fibre gratings,” Opt. Commun. 220(1), 111–118 (2003).
[Crossref]

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Fokine, M.

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Grubsky, V.

Guay, F.

A. Harhira, F. Guay, M. Daigle, J. Lapointe, and R. Kashyap, “Long-period fiber gratings fabricated with a CO2 laser beam and phase mask,” Opt. Commun. 283(23), 4633–4638 (2010).
[Crossref]

Han, W.-T.

Harhira, A.

A. Harhira, F. Guay, M. Daigle, J. Lapointe, and R. Kashyap, “Long-period fiber gratings fabricated with a CO2 laser beam and phase mask,” Opt. Commun. 283(23), 4633–4638 (2010).
[Crossref]

Hirao, K.

Hirose, T.

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

Holmberg, P.

Humbert, G.

Ikushima, A. J.

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Jin, W.

Y. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Kakarantzas, G.

Kashyap, R.

A. Harhira, F. Guay, M. Daigle, J. Lapointe, and R. Kashyap, “Long-period fiber gratings fabricated with a CO2 laser beam and phase mask,” Opt. Commun. 283(23), 4633–4638 (2010).
[Crossref]

Kazansky, P. G.

Kim, B. H.

Kim, D. Y.

Kojima, S.

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

Kondo, Y.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Lapointe, J.

A. Harhira, F. Guay, M. Daigle, J. Lapointe, and R. Kashyap, “Long-period fiber gratings fabricated with a CO2 laser beam and phase mask,” Opt. Commun. 283(23), 4633–4638 (2010).
[Crossref]

Le Roux, R.

Lee, B. H.

Lee, H. W.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Lin, C. Y.

Lines, M. E.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Liu, Y.

Malki, A.

Marques, P. V. S.

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259(2), 620–625 (2006).
[Crossref]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce long-period fibre gratings,” Opt. Commun. 220(1), 111–118 (2003).
[Crossref]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Mitsuyu, T.

Monberg, E. M.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Nouchi, K.

Ohsono, K.

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

Okhotnikov, O.

Ouerdane, Y.

Paek, U.-C.

Pannell, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Peng, G. D.

Y. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Rao, Y. J.

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27(7), 857–863 (2009).
[Crossref]

Y. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Rego, G.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce long-period fibre gratings,” Opt. Commun. 220(1), 111–118 (2003).
[Crossref]

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
[Crossref]

Rego, G. M.

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259(2), 620–625 (2006).
[Crossref]

Russell, P. St. J.

Saito, K.

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

Salgado, H. M.

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259(2), 620–625 (2006).
[Crossref]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce long-period fibre gratings,” Opt. Commun. 220(1), 111–118 (2003).
[Crossref]

Santos, J. L.

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259(2), 620–625 (2006).
[Crossref]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce long-period fibre gratings,” Opt. Commun. 220(1), 111–118 (2003).
[Crossref]

Sato, S.

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Sulimov, V.

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Wang, D. N.

Y. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Wang, L. A.

Wang, Y.

Y. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Watanabe, M.

Wisk, P.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Yablon, A. D.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Yao, B.

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Zhu, T.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[Crossref]

Y. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Electron. Lett. (2)

T. Hirose, K. Saito, S. Kojima, B. Yao, K. Ohsono, S. Sato, and A. J. Ikushima, “Fabrication of long-period fibre grating by CO2 laser-annealing in fibre-drawing process,” Electron. Lett. 43(8), 443–445 (2007).
[Crossref]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

A. Harhira, F. Guay, M. Daigle, J. Lapointe, and R. Kashyap, “Long-period fiber gratings fabricated with a CO2 laser beam and phase mask,” Opt. Commun. 283(23), 4633–4638 (2010).
[Crossref]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce long-period fibre gratings,” Opt. Commun. 220(1), 111–118 (2003).
[Crossref]

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

G. M. Rego, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “Estimation of the fibre temperature during the inscription of arc-induced long-period gratings,” Opt. Commun. 259(2), 620–625 (2006).
[Crossref]

Opt. Lett. (3)

Other (4)

H. M. Chan, E. Perez, F. Alhassen, I. V. Tomov, and H. P. Lee, “Ultra-Compact Long-Period Fiber Grating and Grating Pair Fabrication Using a Modulation-Scanned CO2 Laser,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD), paper JWA5, 25 March, Anaheim, (2007).

V. I. Karpov, M. V. Grekov, E. M. Dianov, K. M. Golant, S. A. Vasiliev. O. I. Medvedkov, R. R. Khrapko. Mode-field converters and long-period gratings fabricated by thermo-diffusion in nitrogen-doped silica-core fibers. OFC’98 Technical Digest, ThG4, pp. 279–280.
[Crossref]

R. Kashyap, Fiber Bragg Gratings (Academic press, 1999).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic layout of the experimental setup where M1, M2, and M3 are mirror, ES is the electronic shutter, BC is a ZnSe beam combiner, TS1, TS2, and TS3 are computer controlled motorized translation stages, OSA is the optical spectrum analyzer. BG1 and BG2 are the reference gratings.

Fig. 2
Fig. 2

Measured reflection spectra of (a) reference gratings BG1 and BG2 and test grating BG3, and (b) reflection spectra of a single grating and the resulting Fabry-Perot cavity after writing the second grating.

Fig. 3
Fig. 3

Schematic of the experimental configuration using a single test grating BG3 (top) and dual grating Fabry-Perot cavity (bottom) with the arrow indicating the location of CO2-laser beam and the ablation region.

Fig. 4
Fig. 4

Microscope images of processed fibers with varying power (a, b, c) and pulse duration (1 to 5) with the corresponding experimental parameters listed in Table 1.

Fig. 5
Fig. 5

Temperature dynamics during a 10 ms long pulse (PCO2 = 3.9 W) showing (a) changes in Bragg wavelength and normalized peak reflection for the test grating BG3, and (b) dynamics of reflected signal from the reference grating (BG2). The shaded regions indicate the duration of the pulse.

Fig. 6
Fig. 6

Summary for 6 pulses showing the reduction of the reflected signal from BG3 after each pulse, the transient loss during the pulse, the renormalized permanent loss per pulse, and the accumulated permanent loss for pulse 1 through 6.

Fig. 7
Fig. 7

Grating reflection spectra (a) of BG2 and BG3 before ablation and after 6 pulses, and (b) seven sequential images showing the initial fiber (top) and the same fiber after each subsequent pulse.

Fig. 8
Fig. 8

Wavelength dynamics during ablation for the FP-cavity fringes, the FP-cavity gratings, and the single test grating BG3. The electronic shutter response is included for comparison. The dashed line between 20 to 40 ms is included to guide the eye.

Fig. 9
Fig. 9

Evolution of the transmission spectra as a function of the number of pulses during LPG formation for pulse lengths of (a) 8 ms, (b) 10 ms, (c), 12 ms in duration with a grating period of ΛLPG = 620 µm. Measured power from CO2 laser was PCO2 = 3.9 W. The color code for the transmission loss for (a-c) covers the range from 0 to 34 dB, shown to the far right.

Fig. 10
Fig. 10

The contour plots (top) shows the transmission evolution during LPG formation as a function of the number of pulses for gratings with period ΛLPG = 560 µm, ΛLPG = 620 µm, and ΛLPG = 680 µm. The color coded scale is shown to the right. The final transmission spectra for each grating is shown below the corrsponding countour plot.

Fig. 11
Fig. 11

Wavelength dynamics during ablation shown for the FP-cavity fringes, the FP-cavity gratings, and the single test grating BG3. For comparison previously reported wavelength dynamics when heating a grating to 1750 °C [22] is included.

Tables (1)

Tables Icon

Table 1 Experimental parameters for processed fibers shown in Fig. 4.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n dc Λ B ,
λ LPG = ( n core n cladd ) Λ LPG ,
Δ λ B ( ΔT )=0.012ΔT+2.9 10 6 Δ T 2 ,
Δ λ B λ B =( α+β )ΔT,
Δ ϕ FP = 2π λ FP 2n L FP ( α+β )ΔT,
Δ λ B = λ B λ FP 2n L FP Δ ϕ FP 2π .

Metrics