Abstract

Plasmonic materials and metamaterials allow light to be controlled with nanoscale precision, enabling development of on-chip lasers, modulators, and detectors; novel medical therapeutics; efficient molecular sensors; sub-diffraction-limited optical microscopies; and improved photovoltaic and photocatalytic cells, among other extraordinary applications. However, a key challenge faced by the field is materials. Current plasmonic devices predominately employ noble metals, which exhibit high optical loss and limited tunability. Additionally, they pose challenges in standard semiconductor fabrication and integration, preventing full CMOS compatibility and wide-spread utilization. The goal of this special issue is to highlight novel materials that could replace traditional plasmonic metals. These materials not only address application-specific challenges but also reveal new physics and enable new functional devices that can readily integrated with existing technologies. The 28 papers of this feature issue focus on emerging materials and fabrication technologies for plasmonics, and encompass recent advances in both passive and active components as well as linear and nonlinear plasmonic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

17 November 2015: Corrections were made to the abstract, body text, and Refs. 31–41.


OSA Recommended Articles
Feature issue introduction: Metamaterials, Photonic Crystals and Plasmonics

Guixin Li, Alexandra Boltasseva, and Said Zouhdi
Opt. Mater. Express 9(5) 2400-2405 (2019)

Feature issue introduction: biophotonic materials and applications

Kwang-Sup Lee, Chantal Andraud, Kaoru Tamada, Konstantin Sokolov, Kenneth T. Kotz, and Gang Zheng
Biomed. Opt. Express 7(5) 2078-2081 (2016)

Feature issue introduction: biophotonic materials and applications

Kwang-Sup Lee, Chantal Andraud, Kaoru Tamada, Konstantin Sokolov, Kenneth T. Kotz, and Gang Zheng
Opt. Mater. Express 6(5) 1747-1750 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
    [Crossref]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  5. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref] [PubMed]
  6. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
  7. D. B. Burckel, P. J. Resnick, P. S. Finnegan, M. B. Sinclair, and P. S. Davids, “Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon,” Opt. Mater. Express 5(10), 2231–2239 (2015).
    [Crossref]
  8. Y. Tian, L. Jiang, Y. Deng, S. Deng, G. Zhang, and X. Zhang, “Bi-nanorod/Si-nanodot hybrid structure: surface dewetting induced growth and its tunable surface plasmon resonance,” Opt. Mater. Express 5(11), 2655–2666 (2015).
    [Crossref]
  9. Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
    [Crossref]
  10. C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express, in press.
  11. M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitrides system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express, in press.
  12. Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, and K.-P. Chen, “Adjustable plasma frequency of titanium nitride thin films fabricated by high-power impulse magnetron sputtering,” Opt. Mater. Express, in press.
  13. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
    [Crossref]
  14. J. Liu, U. Guler, A. Lagutchev, A. V. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-Coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express, in press.
  15. S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Mater. Express 5(11), 2385–2394 (2015).
    [Crossref]
  16. T. Galfsky, Z. Sun, Z. Jacob, and V. M. Menon, “Preferential emission into epsilon-near-zero metamaterial,” Opt. Mater. Express, in press.
  17. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  18. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  19. R. Chandrasekar, N. K. Emani, A. Lagutchev, V. M. Shalaev, C. Ciraci, D. R. Smith, and A. V. Kildishev, “Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances,” Opt. Mater. Express 5(11), 2682–2691 (2015).
    [Crossref]
  20. J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
    [Crossref]
  21. G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
    [Crossref]
  22. A. Pors and S. I. Bozhevolnyi, “Gap plasmon-based phase-amplitude metasurfaces: material constraints,” Opt. Mater. Express 5(11), 2448–2458 (2015).
    [Crossref]
  23. A. Shaltout, A. Kildishev, and V. Shalaev, “Time-varying metasurfaces and Lorentz non-reciprocity,” Opt. Mater. Express 5(11), 2459–2467 (2015).
    [Crossref]
  24. S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces,” Opt. Mater. Express, in press.
  25. N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
    [Crossref]
  26. G. Hajisalem, D. K. Hore, and R. Gordon, “Interband transition enhanced third harmonic generation from nanoplasmonic gold‏,” Opt. Mater. Express 5(10), 2217–2224 (2015).
    [Crossref]
  27. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  28. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  29. N. Arnold, K. Piglmayer, A. V. Kildishev, and T. A. Klar, “Spasers with retardation and gain saturation: electrodynamic description of fields and optical cross-sections,” Opt. Mater. Express 5(11), 2546–2577 (2015).
    [Crossref]
  30. P. Zhou, X. Zhang, L. Li, X. Liu, L. Yuan, and X. Zhang, “Temperature-dependent photoluminescence properties of Mn:ZnCuInS nanocrystals,” Opt. Mater. Express 5(9), 2069–2080 (2015).
    [Crossref]
  31. W. Zheng, X. Liu, A. T. Hanbicki, B. T. Jonker, and G. Lüpke, “Nonlinear magneto-plasmonics,” Opt. Mater. Express 5(11), 2597–2607 (2015).
    [Crossref]
  32. B. Zhu, G. Ren, M. J. Cryan, Y. Gao, Y. Yang, B. Wu, Y. Lian, and S. Jian, “Magnetically tunable non-reciprocal plasmons resonator based on graphene-coated nanowire,” Opt. Mater. Express 5(10), 2174–2183 (2015).
    [Crossref]
  33. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  34. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  35. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  36. S. Kharintsev, A. Alekseev, V. Vasilchenko, A. Kharitonov, and M. Salakhov, “Electrochemical design of plasmonic nanoantennas for tip-enhanced optical spectroscopy and imaging performance,” Opt. Mater. Express 5(10), 2225–2230 (2015).
    [Crossref]
  37. J. Feng, L. Dongfang, and P. Domenico Pacifici, “Circular slit-groove plasmonic interferometers: a generalized approach to high-throughput biochemical sensing,” Opt. Mater. Express, in press.
  38. N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
    [Crossref]
  39. H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mater. Express 5(9), 2054–2068 (2015).
    [Crossref]
  40. T. Gong and J. N. Munday, “Materials for hot carrier plasmonics,” Opt. Mater. Express 5(11), 2501–2512 (2015).
    [Crossref]
  41. F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
    [Crossref]

2015 (21)

D. B. Burckel, P. J. Resnick, P. S. Finnegan, M. B. Sinclair, and P. S. Davids, “Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon,” Opt. Mater. Express 5(10), 2231–2239 (2015).
[Crossref]

Y. Tian, L. Jiang, Y. Deng, S. Deng, G. Zhang, and X. Zhang, “Bi-nanorod/Si-nanodot hybrid structure: surface dewetting induced growth and its tunable surface plasmon resonance,” Opt. Mater. Express 5(11), 2655–2666 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
[Crossref]

S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
[Crossref]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Mater. Express 5(11), 2385–2394 (2015).
[Crossref]

R. Chandrasekar, N. K. Emani, A. Lagutchev, V. M. Shalaev, C. Ciraci, D. R. Smith, and A. V. Kildishev, “Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances,” Opt. Mater. Express 5(11), 2682–2691 (2015).
[Crossref]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
[Crossref]

A. Pors and S. I. Bozhevolnyi, “Gap plasmon-based phase-amplitude metasurfaces: material constraints,” Opt. Mater. Express 5(11), 2448–2458 (2015).
[Crossref]

A. Shaltout, A. Kildishev, and V. Shalaev, “Time-varying metasurfaces and Lorentz non-reciprocity,” Opt. Mater. Express 5(11), 2459–2467 (2015).
[Crossref]

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

G. Hajisalem, D. K. Hore, and R. Gordon, “Interband transition enhanced third harmonic generation from nanoplasmonic gold‏,” Opt. Mater. Express 5(10), 2217–2224 (2015).
[Crossref]

N. Arnold, K. Piglmayer, A. V. Kildishev, and T. A. Klar, “Spasers with retardation and gain saturation: electrodynamic description of fields and optical cross-sections,” Opt. Mater. Express 5(11), 2546–2577 (2015).
[Crossref]

P. Zhou, X. Zhang, L. Li, X. Liu, L. Yuan, and X. Zhang, “Temperature-dependent photoluminescence properties of Mn:ZnCuInS nanocrystals,” Opt. Mater. Express 5(9), 2069–2080 (2015).
[Crossref]

W. Zheng, X. Liu, A. T. Hanbicki, B. T. Jonker, and G. Lüpke, “Nonlinear magneto-plasmonics,” Opt. Mater. Express 5(11), 2597–2607 (2015).
[Crossref]

B. Zhu, G. Ren, M. J. Cryan, Y. Gao, Y. Yang, B. Wu, Y. Lian, and S. Jian, “Magnetically tunable non-reciprocal plasmons resonator based on graphene-coated nanowire,” Opt. Mater. Express 5(10), 2174–2183 (2015).
[Crossref]

S. Kharintsev, A. Alekseev, V. Vasilchenko, A. Kharitonov, and M. Salakhov, “Electrochemical design of plasmonic nanoantennas for tip-enhanced optical spectroscopy and imaging performance,” Opt. Mater. Express 5(10), 2225–2230 (2015).
[Crossref]

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mater. Express 5(9), 2054–2068 (2015).
[Crossref]

T. Gong and J. N. Munday, “Materials for hot carrier plasmonics,” Opt. Mater. Express 5(11), 2501–2512 (2015).
[Crossref]

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
[Crossref]

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

2012 (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

2011 (3)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).

2010 (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (2)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

2007 (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

2006 (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Alekseev, A.

Alù, A.

Arnold, N.

Aydin, K.

Bagheri, S.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Bermel, P.

Berrier, A.

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Boltasseva, A.

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

J. Liu, U. Guler, A. Lagutchev, A. V. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-Coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express, in press.

Bonner, C. E.

Bouchard, F.

S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces,” Opt. Mater. Express, in press.

Boyd, R. W.

S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces,” Opt. Mater. Express, in press.

Bozhevolnyi, S. I.

A. Pors and S. I. Bozhevolnyi, “Gap plasmon-based phase-amplitude metasurfaces: material constraints,” Opt. Mater. Express 5(11), 2448–2458 (2015).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Burckel, D. B.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Campione, S.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Capretti, A.

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Chandrasekar, R.

Chen, K.-P.

Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, and K.-P. Chen, “Adjustable plasma frequency of titanium nitride thin films fabricated by high-power impulse magnetron sputtering,” Opt. Mater. Express, in press.

Chen, Y.-H.

Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, and K.-P. Chen, “Adjustable plasma frequency of titanium nitride thin films fabricated by high-power impulse magnetron sputtering,” Opt. Mater. Express, in press.

Chung, H.

Ciraci, C.

Cleary, J. W.

Courtwright, D.

Cryan, M. J.

Dal Negro, L.

Davids, P. S.

De Leon, I.

S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces,” Opt. Mater. Express, in press.

De Zuani, S.

Deng, S.

Deng, Y.

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

DeVault, C.

Domenico Pacifici, P.

J. Feng, L. Dongfang, and P. Domenico Pacifici, “Circular slit-groove plasmonic interferometers: a generalized approach to high-throughput biochemical sensing,” Opt. Mater. Express, in press.

Dongfang, L.

J. Feng, L. Dongfang, and P. Domenico Pacifici, “Circular slit-groove plasmonic interferometers: a generalized approach to high-throughput biochemical sensing,” Opt. Mater. Express, in press.

Emani, N. K.

Feng, J.

J. Feng, L. Dongfang, and P. Domenico Pacifici, “Circular slit-groove plasmonic interferometers: a generalized approach to high-throughput biochemical sensing,” Opt. Mater. Express, in press.

Finnegan, P. S.

Galfsky, T.

T. Galfsky, Z. Sun, Z. Jacob, and V. M. Menon, “Preferential emission into epsilon-near-zero metamaterial,” Opt. Mater. Express, in press.

Gao, Y.

Gavrilenko, V. I.

Giessen, H.

Gissibl, T.

Gomez-Diaz, J. S.

Gong, T.

Gordon, R.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Guler, U.

J. Liu, U. Guler, A. Lagutchev, A. V. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-Coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express, in press.

Hagan, D. J.

Hajisalem, G.

Hanbicki, A. T.

Hecht, B.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hore, D. K.

Hu, E. L.

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Ishii, S.

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitrides system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express, in press.

Jacob, Z.

T. Galfsky, Z. Sun, Z. Jacob, and V. M. Menon, “Preferential emission into epsilon-near-zero metamaterial,” Opt. Mater. Express, in press.

Jian, S.

Jiang, L.

Jonker, B. T.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Jung, K.-Y.

Kaplan, G.

Karimi, E.

S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces,” Opt. Mater. Express, in press.

Khalilzadeh-Rezaie, F.

Kharintsev, S.

Kharitonov, A.

Kildishev, A.

Kildishev, A. V.

Kinsey, N.

Klar, T. A.

Kumar, M.

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitrides system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express, in press.

Lagutchev, A.

R. Chandrasekar, N. K. Emani, A. Lagutchev, V. M. Shalaev, C. Ciraci, D. R. Smith, and A. V. Kildishev, “Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances,” Opt. Mater. Express 5(11), 2682–2691 (2015).
[Crossref]

J. Liu, U. Guler, A. Lagutchev, A. V. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-Coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express, in press.

Li, L.

Lian, Y.

Liao, B.-H.

Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, and K.-P. Chen, “Adjustable plasma frequency of titanium nitride thin films fabricated by high-power impulse magnetron sputtering,” Opt. Mater. Express, in press.

Liu, J.

J. Liu, U. Guler, A. Lagutchev, A. V. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-Coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express, in press.

Liu, S.

Liu, X.

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Luk, T. S.

Lüpke, G.

Malis, O.

J. Liu, U. Guler, A. Lagutchev, A. V. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-Coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express, in press.

Menon, V. M.

T. Galfsky, Z. Sun, Z. Jacob, and V. M. Menon, “Preferential emission into epsilon-near-zero metamaterial,” Opt. Mater. Express, in press.

Munday, J. N.

Nader, N.

Nagao, T.

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitrides system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express, in press.

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nath, J.

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Oladeji, I. O.

Peale, R. E.

Piglmayer, K.

Pors, A.

Ren, G.

Resnick, P. J.

Rezadad, I.

Richter, G.

Salakhov, M.

Scheuer, J.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Schulz, S. A.

S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces,” Opt. Mater. Express, in press.

Shalaev, V.

Shalaev, V. M.

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

R. Chandrasekar, N. K. Emani, A. Lagutchev, V. M. Shalaev, C. Ciraci, D. R. Smith, and A. V. Kildishev, “Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances,” Opt. Mater. Express 5(11), 2682–2691 (2015).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

J. Liu, U. Guler, A. Lagutchev, A. V. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-Coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express, in press.

Shaltout, A.

Sinclair, M. B.

Smith, D. R.

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).

Stauden, T.

Sterl, F.

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Strohfeldt, N.

Sun, Z.

T. Galfsky, Z. Sun, Z. Jacob, and V. M. Menon, “Preferential emission into epsilon-near-zero metamaterial,” Opt. Mater. Express, in press.

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Syed, A. A.

Tian, Y.

Tittl, A.

Tymchenko, M.

Umezawa, N.

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitrides system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express, in press.

Upham, J.

S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces,” Opt. Mater. Express, in press.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Van Stryland, E. W.

Vasilchenko, V.

Walter, R.

Wang, Y.

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wu, B.

Yang, Y.

Yang, Z.-Y.

Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, and K.-P. Chen, “Adjustable plasma frequency of titanium nitride thin films fabricated by high-power impulse magnetron sputtering,” Opt. Mater. Express, in press.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yuan, L.

Zgrabik, C. M.

Zhang, G.

Zhang, X.

Zhao, J.

Zheng, W.

Zhou, P.

Zhu, B.

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[Crossref]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).

Nature (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (21)

N. Arnold, K. Piglmayer, A. V. Kildishev, and T. A. Klar, “Spasers with retardation and gain saturation: electrodynamic description of fields and optical cross-sections,” Opt. Mater. Express 5(11), 2546–2577 (2015).
[Crossref]

P. Zhou, X. Zhang, L. Li, X. Liu, L. Yuan, and X. Zhang, “Temperature-dependent photoluminescence properties of Mn:ZnCuInS nanocrystals,” Opt. Mater. Express 5(9), 2069–2080 (2015).
[Crossref]

W. Zheng, X. Liu, A. T. Hanbicki, B. T. Jonker, and G. Lüpke, “Nonlinear magneto-plasmonics,” Opt. Mater. Express 5(11), 2597–2607 (2015).
[Crossref]

B. Zhu, G. Ren, M. J. Cryan, Y. Gao, Y. Yang, B. Wu, Y. Lian, and S. Jian, “Magnetically tunable non-reciprocal plasmons resonator based on graphene-coated nanowire,” Opt. Mater. Express 5(10), 2174–2183 (2015).
[Crossref]

R. Chandrasekar, N. K. Emani, A. Lagutchev, V. M. Shalaev, C. Ciraci, D. R. Smith, and A. V. Kildishev, “Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances,” Opt. Mater. Express 5(11), 2682–2691 (2015).
[Crossref]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
[Crossref]

A. Pors and S. I. Bozhevolnyi, “Gap plasmon-based phase-amplitude metasurfaces: material constraints,” Opt. Mater. Express 5(11), 2448–2458 (2015).
[Crossref]

A. Shaltout, A. Kildishev, and V. Shalaev, “Time-varying metasurfaces and Lorentz non-reciprocity,” Opt. Mater. Express 5(11), 2459–2467 (2015).
[Crossref]

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

G. Hajisalem, D. K. Hore, and R. Gordon, “Interband transition enhanced third harmonic generation from nanoplasmonic gold‏,” Opt. Mater. Express 5(10), 2217–2224 (2015).
[Crossref]

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

H. Chung, K.-Y. Jung, and P. Bermel, “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mater. Express 5(9), 2054–2068 (2015).
[Crossref]

T. Gong and J. N. Munday, “Materials for hot carrier plasmonics,” Opt. Mater. Express 5(11), 2501–2512 (2015).
[Crossref]

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
[Crossref]

D. B. Burckel, P. J. Resnick, P. S. Finnegan, M. B. Sinclair, and P. S. Davids, “Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon,” Opt. Mater. Express 5(10), 2231–2239 (2015).
[Crossref]

Y. Tian, L. Jiang, Y. Deng, S. Deng, G. Zhang, and X. Zhang, “Bi-nanorod/Si-nanodot hybrid structure: surface dewetting induced growth and its tunable surface plasmon resonance,” Opt. Mater. Express 5(11), 2655–2666 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
[Crossref]

S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
[Crossref]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Mater. Express 5(11), 2385–2394 (2015).
[Crossref]

S. Kharintsev, A. Alekseev, V. Vasilchenko, A. Kharitonov, and M. Salakhov, “Electrochemical design of plasmonic nanoantennas for tip-enhanced optical spectroscopy and imaging performance,” Opt. Mater. Express 5(10), 2225–2230 (2015).
[Crossref]

Phys. Rev. Lett. (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Other (7)

S. A. Schulz, J. Upham, F. Bouchard, I. De Leon, E. Karimi, and R. W. Boyd, “Quantifying the impact of proximity error correction on plasmonic metasurfaces,” Opt. Mater. Express, in press.

T. Galfsky, Z. Sun, Z. Jacob, and V. M. Menon, “Preferential emission into epsilon-near-zero metamaterial,” Opt. Mater. Express, in press.

J. Liu, U. Guler, A. Lagutchev, A. V. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-Coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express, in press.

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express, in press.

M. Kumar, S. Ishii, N. Umezawa, and T. Nagao, “Band engineering of ternary metal nitrides system Ti1-xZrxN for plasmonic applications,” Opt. Mater. Express, in press.

Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, and K.-P. Chen, “Adjustable plasma frequency of titanium nitride thin films fabricated by high-power impulse magnetron sputtering,” Opt. Mater. Express, in press.

J. Feng, L. Dongfang, and P. Domenico Pacifici, “Circular slit-groove plasmonic interferometers: a generalized approach to high-throughput biochemical sensing,” Opt. Mater. Express, in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics