Abstract

Plasmonic resonances in metallic nanostructures have been shown to drastically enhance local electromagnetic fields, and thereby increase the efficiency of nonlinear optical phenomena, such as second harmonic generation (SHG). While it has been experimentally observed that enhanced fields can significantly boost SHG, to date it proved difficult to probe electrical and magnetic resonance in one and the same nanostructure. This however is necessary to directly compare relative contributions of electrical and magnetic components of SHG enhancement. In this paper we report an experimental study of a metasurface capable of providing electrical and magnetic resonant SHG enhancement for TM polarization. Our metasurface could be engineered such that the peak frequencies of electrical and magnetic resonances could be adjusted independently. We used this feature to distinguish their relative contributions. Experimentally it was observed that the magnetic resonance provides only 50% as much enhancement to SHG as compared to the electric resonance. In addition aligning both resonances in frequency results in conversion efficiency of 1.32 x 10−10.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient second harmonic generation in gold–silicon core–shell nanostructures

Zhong-Jian Yang, Qian Zhao, Yan-Hui Deng, Dou Zhang, and Jun He
Opt. Express 26(5) 5835-5844 (2018)

Enhanced second-harmonic generation from nonlinear optical metamagnetics

Shang Sun, Ningbo Yi, Wenjiao Yao, Qinghai Song, and Shumin Xiao
Opt. Express 22(22) 26613-26620 (2014)

Multipolar nonlinear nanophotonics

Daria Smirnova and Yuri S. Kivshar
Optica 3(11) 1241-1255 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  3. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  4. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  5. D. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  6. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  7. P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  8. N. Zheludev and V. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
    [Crossref]
  9. W. Cai and V. M. Shalaev, Optical Metamaterials, Vol. 10 (Springer, 2010)
  10. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
    [Crossref]
  11. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
    [Crossref] [PubMed]
  12. G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
    [Crossref] [PubMed]
  13. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20(10), 10498–10508 (2012).
    [Crossref] [PubMed]
  14. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
    [Crossref] [PubMed]
  15. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
    [Crossref] [PubMed]
  16. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
    [Crossref]
  17. H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
    [Crossref] [PubMed]
  18. K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
    [PubMed]
  19. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
    [Crossref]
  20. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
    [Crossref] [PubMed]
  21. M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
    [Crossref]
  22. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
    [Crossref] [PubMed]
  23. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
    [Crossref] [PubMed]
  24. S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
    [Crossref] [PubMed]
  25. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
    [Crossref] [PubMed]
  26. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
    [Crossref]
  27. N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9(3), 180–184 (2015).
    [Crossref]
  28. K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
    [Crossref] [PubMed]
  29. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
    [Crossref] [PubMed]
  30. I. Kolmychek, E. A. Mamonov, A. Y. Bykov, T. V. Murzina, S. Kruk, D. N. Neshev, M. Weismann, N. C. Panoiu, and Y. S. Kivshar, “Nonlinear-Optical Studies of Magnetic Dipole Metamaterials,” in Frontiers in Optics2015. (Optical Society of America) FTh1D.2asdf.
  31. S. S. Kruk, M. Weismann, A. Bykov, E. Mamonov, I. Kolmychek, T. Murzina, N. Panoiu, D. N. Neshev, and Y. S. Kivshar, in CLEO:QELS Fundamental Science (2015), FM1C–4.
  32. J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
    [Crossref] [PubMed]
  33. B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
    [Crossref] [PubMed]
  34. J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
    [Crossref] [PubMed]
  35. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [Crossref] [PubMed]
  36. A. V. Kildishev, “Modeling nonlinear effects in 2D optical metamagnetics,” Metamaterials (Amst.) 4(2-3), 77–82 (2010).
    [Crossref]
  37. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
    [Crossref] [PubMed]
  38. X. Ni, Z. Liu, and A. V. Kildishev, “PhotonicsDB: Optical Constants,” Nanohub.org (2007)
  39. K. O’Donnell and R. Torre, “Characterization of the second-harmonic response of a silver-air interface,” New J. Phys. 7, 154 (2005).
    [Crossref]
  40. R. W. Boyd, Nonlinear Optics (Academic Press, 2003)
  41. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80(4), 041102 (2009).
    [Crossref]
  42. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
    [Crossref]
  43. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16(24), 19504–19511 (2008).
    [Crossref] [PubMed]

2015 (3)

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9(3), 180–184 (2015).
[Crossref]

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

2014 (1)

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

2013 (4)

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[Crossref] [PubMed]

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
[Crossref]

2012 (9)

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
[Crossref] [PubMed]

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20(10), 10498–10508 (2012).
[Crossref] [PubMed]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
[Crossref] [PubMed]

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (4)

D. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

A. V. Kildishev, “Modeling nonlinear effects in 2D optical metamagnetics,” Metamaterials (Amst.) 4(2-3), 77–82 (2010).
[Crossref]

2009 (2)

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80(4), 041102 (2009).
[Crossref]

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

2008 (3)

2007 (3)

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

2005 (1)

K. O’Donnell and R. Torre, “Characterization of the second-harmonic response of a silver-air interface,” New J. Phys. 7, 154 (2005).
[Crossref]

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

N. Zheludev and V. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
[Crossref]

1961 (1)

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alù, A.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Amann, M. C.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Argyropoulos, C.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Bachelier, G.

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Belkin, M. A.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Benichou, E.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
[Crossref]

Berthelot, J.

Boehm, G.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Bouhelier, A.

Bozhevolnyi, S. I.

D. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Brevet, P.-F.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
[Crossref]

Butet, J.

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
[Crossref]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[Crossref] [PubMed]

Cai, W.

Campione, S.

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Capolino, F.

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

Chakrabarti, S.

Chauvat, D.

Chen, P.-Y.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Chettiar, U. K.

Ciracì, C.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

Colas des Francs, G.

Dal Negro, L.

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

Danckwerts, M.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

de Ceglia, D.

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

de Silva, V. C.

de Wilde, Y.

Decker, M.

Demmerle, F.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Dereux, A.

Drachev, V. P.

Ellenbogen, T.

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9(3), 180–184 (2015).
[Crossref]

Emel’yanov, V.

N. Zheludev and V. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
[Crossref]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Etrich, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80(4), 041102 (2009).
[Crossref]

Feth, N.

Floess, D.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Förstner, J.

S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
[Crossref] [PubMed]

Franken, P.

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Fu, Y. H.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80(4), 041102 (2009).
[Crossref]

Fuchs, J.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Giessen, H.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Gramotnev, D.

D. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Grange, R.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Grynko, Y.

S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
[Crossref] [PubMed]

Gui, L.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Guo, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Hendler, N.

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9(3), 180–184 (2015).
[Crossref]

Hentschel, M.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Hill, A.

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Hong, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Hoyer, W.

Hsieh, C.-L.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Jacques, V.

Jonin, C.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
[Crossref]

Kante, B.

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Keren-Zur, S.

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9(3), 180–184 (2015).
[Crossref]

Kildishev, A. V.

Klein, M. W.

Koch, S. W.

Kuhl, J.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Kuittinen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Lascoux, N.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
[Crossref]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Le Xuan, L.

Lederer, F.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Lee, J.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Linden, S.

S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
[Crossref] [PubMed]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
[Crossref] [PubMed]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Liu, J.

Liu, N.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Loa, I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Lovera, A.

Lu, F.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Maier, S. A.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Martin, O. J. F.

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[Crossref] [PubMed]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
[Crossref] [PubMed]

Meier, T.

S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
[Crossref] [PubMed]

Metzger, B.

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

Moloney, J. V.

Navarro-Cia, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Niesler, F. B. P.

S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
[Crossref] [PubMed]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
[Crossref] [PubMed]

Novotny, L.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

O’Brien, K.

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

O’Donnell, K.

K. O’Donnell and R. Torre, “Characterization of the second-harmonic response of a silver-air interface,” New J. Phys. 7, 154 (2005).
[Crossref]

Oulton, R. F.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Palomba, S.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80(4), 041102 (2009).
[Crossref]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Peters, C.

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Poutrina, E.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Psaltis, D.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Pu, Y.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Rahmani, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Rai, P.

Ramakrishna, S. A.

Rho, J.

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

Rivier, S.

Roch, J.-F.

Rockstuhl, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Russier-Antoine, I.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
[Crossref]

Salandrino, A.

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

Scalora, M.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Segal, N.

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9(3), 180–184 (2015).
[Crossref]

Shalaev, V. M.

Sidiropoulos, T. P. H.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Slablab, A.

Smith, D. R.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Song, M.

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Suchowski, H.

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

Syassen, K. I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thyagarajan, K.

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[Crossref] [PubMed]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
[Crossref] [PubMed]

Torre, R.

K. O’Donnell and R. Torre, “Characterization of the second-harmonic response of a silver-air interface,” New J. Phys. 7, 154 (2005).
[Crossref]

Tsai, D. P.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80(4), 041102 (2009).
[Crossref]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Tymchenko, M.

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

Vincenti, M. A.

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

Walsh, G. F.

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

Wanare, H.

Wegener, M.

S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
[Crossref] [PubMed]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Weinreich, G.

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Yin, X.

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, H. K.

Yuan, H.-K.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zeng, Y.

Zentgraf, T.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

Zhang, X.

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Zheludev, N.

N. Zheludev and V. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
[Crossref]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80(4), 041102 (2009).
[Crossref]

Zielinski, M.

Appl. Phys. B (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. I. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

N. Zheludev and V. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt. 6(1), 26–28 (2004).
[Crossref]

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11(11), 114030 (2009).
[Crossref]

J. Phys. Chem. C (1)

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C 117(2), 1172–1177 (2013).
[Crossref]

Metamaterials (Amst.) (1)

A. V. Kildishev, “Modeling nonlinear effects in 2D optical metamagnetics,” Metamaterials (Amst.) 4(2-3), 77–82 (2010).
[Crossref]

Nano Lett. (7)

B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength,” Nano Lett. 15(6), 3917–3922 (2015).
[Crossref] [PubMed]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13(4), 1787–1792 (2013).
[Crossref] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, “Predicting nonlinear properties of metamaterials from the linear response,” Nat. Mater. 14(4), 379–383 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic crystals,” Nat. Photonics 9(3), 180–184 (2015).
[Crossref]

D. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nature (1)

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, M. A. Belkin, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).
[Crossref] [PubMed]

New J. Phys. (2)

K. O’Donnell and R. Torre, “Characterization of the second-harmonic response of a silver-air interface,” New J. Phys. 7, 154 (2005).
[Crossref]

M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. B (3)

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86(11), 115451 (2012).
[Crossref]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80(4), 041102 (2009).
[Crossref]

Phys. Rev. Lett. (3)

P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, “Collective effects in second-harmonic generation from split-ring-resonator arrays,” Phys. Rev. Lett. 109(1), 015502 (2012).
[Crossref] [PubMed]

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Science (5)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (5)

W. Cai and V. M. Shalaev, Optical Metamaterials, Vol. 10 (Springer, 2010)

X. Ni, Z. Liu, and A. V. Kildishev, “PhotonicsDB: Optical Constants,” Nanohub.org (2007)

I. Kolmychek, E. A. Mamonov, A. Y. Bykov, T. V. Murzina, S. Kruk, D. N. Neshev, M. Weismann, N. C. Panoiu, and Y. S. Kivshar, “Nonlinear-Optical Studies of Magnetic Dipole Metamaterials,” in Frontiers in Optics2015. (Optical Society of America) FTh1D.2asdf.

S. S. Kruk, M. Weismann, A. Bykov, E. Mamonov, I. Kolmychek, T. Murzina, N. Panoiu, D. N. Neshev, and Y. S. Kivshar, in CLEO:QELS Fundamental Science (2015), FM1C–4.

R. W. Boyd, Nonlinear Optics (Academic Press, 2003)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) 3D schematic of the metasurface consisting of coupled silver nanostrips gratings, (b) schematic of grating cross section, d = 19.5 nm for Sample 1 and 15 nm for Sample 2, (c) SEM image of metasurface, (d) Experimental (solid) and simulated (dashed) transmission spectra for Sample 1 and 2.
Fig. 2
Fig. 2 Experimental results for transmitted second harmonic output. (a),(c) Wavelength scans of Samples 1 and 2, (b),(d) Power scans of Samples 1 and 2.
Fig. 3
Fig. 3 (a) Match of experiments (black squares) and finite-element simulations (black line) for Sample 1, (b) Finite-element simulations (shown in solid red) that do not account for roughness in the structure and show the magnetic resonance at 1250 nm to have stronger contribution to SHG than the electric resonance at 1140 nm. Due to the computational complexity of simulating roughness for 3D structures by finite-element methods, we use a simplified Gaussian model to account for roughness and confirm our experimental results. The Gaussian “roughness” model is first tested against the finite-element simulations (compare dashed red vs. solid red) and then applied to fit the experiments (compare dashed black vs solid squares).
Fig. 4
Fig. 4 Field maps of Sample 1 at (a) 570 nm (electric resonance) and (b) 1140 nm (magnetic resonance) and (c) transmission of Sample 1 at 45° incidence.
Fig. 5
Fig. 5 Field maps of Sample 2 at (a) 570 nm (electric resonance) and (b) 1240 nm (magnetic resonance) and (c) transmission of Sample 2 at 45 degree° incidence.
Fig. 6
Fig. 6 Pump-probe setup used to measure pulse width of SHG pump beam. Red line refers to 800 nm light, orange light refers to IR SHG pump beam, and blue line refers to SFG signal from BBO crystal.
Fig. 7
Fig. 7 Cross correlation signal of 800 nm and SHG pump pulses from Optical Parametric Amplifier (OPA).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

× × E 2 k 2 2 E 2 = μ 0 ω 2 2 P 2
P 2 = ϵ 0 χ t t n ( 2 ) E 1 , x E 1 , z x ^ + ϵ 0 χ t t n ( 2 ) E 1 , x E 1 , z y ^ + ϵ 0 ( χ n t t ( 2 ) E 1 , x 2 + χ n n n ( 2 ) E 1 , z 2 ) z ^

Metrics