Abstract

Hybrid nanostructures composed of plasmonic metal and semiconductor are receiving increasing attentions, owing to their unique optical features that are induced by the co-existence of localized surface plasmon resonance (SPR) and semiconduction as well as the synergistic interactions between these two components. Other than the structures based on conventional noble metals, a cost-effective structure based on non-noble metal is studied in this work. Utilizing the surface dewetting in Bi-Si system, the Bi-nanorod/Si-nanodots hybrid structure (BSHS) is prepared by alternated sputtering of Bi and Si at low rate. The shift, split, and high order excitation of SPRs in BSHS are studied combining numerical and theoretical simulation. Calculations of the optical extinction performed as a function of the size of BSHS show a guideline to tune its spectra.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance

C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor
Opt. Express 16(14) 10701-10709 (2008)

Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods

Wing-Cheung Law, Ken-Tye Yong, Alexander Baev, Rui Hu, and Paras N. Prasad
Opt. Express 17(21) 19041-19046 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. Bhushan, Springer handbook of nanotechnology (Springer Science & Business Media, 2010).
  2. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
    [Crossref]
  3. T. M. Chien and W. H. Hung, “Observation of strong plasmonic heating in Au-Fe2O3 nanocomposite,” Mater. Res. Express 1(1), 015009 (2014).
    [Crossref]
  4. H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75(9), 096402 (2012).
    [Crossref] [PubMed]
  5. S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
    [PubMed]
  6. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  7. J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
    [Crossref] [PubMed]
  8. J. Yang, M. Perrin, and P. Lalanne, “Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators,” Phys. Rev. X 5(2), 021008 (2015).
    [Crossref]
  9. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
    [Crossref] [PubMed]
  10. R. D. Near, S. C. Hayden, and M. A. El-Sayed, “Thin to thick, short to long: spectral properties of gold nanorods by theoretical modeling,” J. Phys. Chem. C 117(36), 18653–18656 (2013).
    [Crossref]
  11. R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
    [Crossref] [PubMed]
  12. M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
    [Crossref] [PubMed]
  13. F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
    [Crossref] [PubMed]
  14. J. Toudert, R. Serna, and M. Jimenez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
    [Crossref]
  15. N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
    [Crossref]
  16. P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
    [Crossref]
  17. M. Seol, E. Ramasamy, J. Lee, and K. Yong, “Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode,” J. Phys. Chem. C 115(44), 22018–22024 (2011).
    [Crossref]
  18. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation,” Nano Lett. 10(3), 1088–1092 (2010).
    [Crossref] [PubMed]
  19. L. Enke, Z. Bingsheng, and L. Jinsheng, Semiconductor Physics (Beijing: Publishing House of Electronics Industry, 2003).
  20. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
    [Crossref]
  21. C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Robust nanopatterning by laser-induced dewetting of metal nanofilms,” Nanotechnology 17(16), 4229–4234 (2006).
    [Crossref] [PubMed]
  22. R. Mukherjee, M. Gonuguntla, and A. Sharma, “Meso-patterning of thin polymer films by controlled dewetting: from nano-droplet arrays to membranes,” J. Nanosci. Nanotechnol. 7(6), 2069–2075 (2007).
    [Crossref] [PubMed]
  23. Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
    [Crossref]
  24. Z. Zhang, X. Sun, M. Dresselhaus, J. Y. Ying, and J. P. Heremans, “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Appl. Phys. Lett. 73(11), 1589–1591 (1998).
    [Crossref]
  25. T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
    [Crossref]
  26. Y. Tian, L. Jiang, X. Zhang, Y. Deng, and S. Deng, “Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact,” Mater. Res. Express 1(3), 035034 (2014).
    [Crossref]
  27. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  28. K. Seshan, Handbook of Thin Film Deposition (Elsevier, 2012).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  30. C. K. Lin, C. H. Hsu, and S. C. Kung, “Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron,” Appl. Surf. Sci. 284, 59–65 (2013).
    [Crossref]
  31. M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
    [Crossref] [PubMed]
  32. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref] [PubMed]
  33. W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
    [Crossref] [PubMed]
  34. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
    [Crossref] [PubMed]
  35. N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
    [Crossref] [PubMed]
  36. N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
    [Crossref] [PubMed]
  37. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
    [Crossref]
  38. J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880–16891 (2012).
    [Crossref]
  39. C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
    [Crossref]
  40. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [Crossref] [PubMed]
  41. K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
    [Crossref] [PubMed]
  42. C. P. Huang, X. G. Yin, H. Huang, and Y. Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express 17(8), 6407–6413 (2009).
    [Crossref] [PubMed]
  43. E. Gamaly and A. Rode, “Electron-phonon energy relaxation in bismuth excited by ultrashort laser pulse: temperature and fluence dependence,” Appl. Phys., A Mater. Sci. Process. 110(3), 529–535 (2013).
    [Crossref]

2015 (2)

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

J. Yang, M. Perrin, and P. Lalanne, “Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators,” Phys. Rev. X 5(2), 021008 (2015).
[Crossref]

2014 (7)

T. M. Chien and W. H. Hung, “Observation of strong plasmonic heating in Au-Fe2O3 nanocomposite,” Mater. Res. Express 1(1), 015009 (2014).
[Crossref]

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Y. Tian, L. Jiang, X. Zhang, Y. Deng, and S. Deng, “Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact,” Mater. Res. Express 1(3), 035034 (2014).
[Crossref]

M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

2013 (5)

E. Gamaly and A. Rode, “Electron-phonon energy relaxation in bismuth excited by ultrashort laser pulse: temperature and fluence dependence,” Appl. Phys., A Mater. Sci. Process. 110(3), 529–535 (2013).
[Crossref]

T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
[Crossref]

C. K. Lin, C. H. Hsu, and S. C. Kung, “Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron,” Appl. Surf. Sci. 284, 59–65 (2013).
[Crossref]

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
[Crossref] [PubMed]

R. D. Near, S. C. Hayden, and M. A. El-Sayed, “Thin to thick, short to long: spectral properties of gold nanorods by theoretical modeling,” J. Phys. Chem. C 117(36), 18653–18656 (2013).
[Crossref]

2012 (5)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75(9), 096402 (2012).
[Crossref] [PubMed]

J. Toudert, R. Serna, and M. Jimenez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880–16891 (2012).
[Crossref]

2011 (4)

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

M. Seol, E. Ramasamy, J. Lee, and K. Yong, “Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode,” J. Phys. Chem. C 115(44), 22018–22024 (2011).
[Crossref]

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

2010 (1)

G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation,” Nano Lett. 10(3), 1088–1092 (2010).
[Crossref] [PubMed]

2009 (4)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

C. P. Huang, X. G. Yin, H. Huang, and Y. Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express 17(8), 6407–6413 (2009).
[Crossref] [PubMed]

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[Crossref]

2008 (3)

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

2007 (1)

R. Mukherjee, M. Gonuguntla, and A. Sharma, “Meso-patterning of thin polymer films by controlled dewetting: from nano-droplet arrays to membranes,” J. Nanosci. Nanotechnol. 7(6), 2069–2075 (2007).
[Crossref] [PubMed]

2006 (1)

C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Robust nanopatterning by laser-induced dewetting of metal nanofilms,” Nanotechnology 17(16), 4229–4234 (2006).
[Crossref] [PubMed]

2005 (2)

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

2004 (1)

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

1998 (2)

Z. Zhang, X. Sun, M. Dresselhaus, J. Y. Ying, and J. P. Heremans, “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Appl. Phys. Lett. 73(11), 1589–1591 (1998).
[Crossref]

N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
[Crossref]

Abo-Hamed, E. K.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Aizpurua, J.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Alferov, Z. I.

N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
[Crossref]

Angelomé, P. C.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Baumberg, J. J.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Belk, J. H.

T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
[Crossref]

Bertorelle, F.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Bimberg, D.

N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
[Crossref]

Bisquert, J.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Bomans, P. H.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Bongiorno, C.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[Crossref]

Boninelli, S.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[Crossref]

Bonnet, C.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Brower, T.

T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
[Crossref]

Broyer, M.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Capasso, F.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[Crossref]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Chen, H.

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75(9), 096402 (2012).
[Crossref] [PubMed]

Chien, T. M.

T. M. Chien and W. H. Hung, “Observation of strong plasmonic heating in Au-Fe2O3 nanocomposite,” Mater. Res. Express 1(1), 015009 (2014).
[Crossref]

Collin, S.

Cottancin, E.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Cubukcu, E.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[Crossref]

Davis, T. J.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Deng, S.

Y. Tian, L. Jiang, X. Zhang, Y. Deng, and S. Deng, “Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact,” Mater. Res. Express 1(3), 035034 (2014).
[Crossref]

Deng, Y.

Y. Tian, L. Jiang, X. Zhang, Y. Deng, and S. Deng, “Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact,” Mater. Res. Express 1(3), 035034 (2014).
[Crossref]

Denkova, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Dong, F.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Dresselhaus, M.

Z. Zhang, X. Sun, M. Dresselhaus, J. Y. Ying, and J. P. Heremans, “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Appl. Phys. Lett. 73(11), 1589–1591 (1998).
[Crossref]

El-Sayed, M. A.

R. D. Near, S. C. Hayden, and M. A. El-Sayed, “Thin to thick, short to long: spectral properties of gold nanorods by theoretical modeling,” J. Phys. Chem. C 117(36), 18653–18656 (2013).
[Crossref]

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
[Crossref] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Esteban, R.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Fang, C.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Favazza, C.

C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Robust nanopatterning by laser-induced dewetting of metal nanofilms,” Nanotechnology 17(16), 4229–4234 (2006).
[Crossref] [PubMed]

Fei Guo, C.

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

Feng, X.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Funston, A. M.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Gamaly, E.

E. Gamaly and A. Rode, “Electron-phonon energy relaxation in bismuth excited by ultrashort laser pulse: temperature and fluence dependence,” Appl. Phys., A Mater. Sci. Process. 110(3), 529–535 (2013).
[Crossref]

García de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Giessen, H.

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

Gonuguntla, M.

R. Mukherjee, M. Gonuguntla, and A. Sharma, “Meso-patterning of thin polymer films by controlled dewetting: from nano-droplet arrays to membranes,” J. Nanosci. Nanotechnol. 7(6), 2069–2075 (2007).
[Crossref] [PubMed]

Grillet, N.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Guo, S.

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

Hafner, J. H.

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[Crossref]

Hayden, S. C.

R. D. Near, S. C. Hayden, and M. A. El-Sayed, “Thin to thick, short to long: spectral properties of gold nanorods by theoretical modeling,” J. Phys. Chem. C 117(36), 18653–18656 (2013).
[Crossref]

Heremans, J. P.

Z. Zhang, X. Sun, M. Dresselhaus, J. Y. Ying, and J. P. Heremans, “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Appl. Phys. Lett. 73(11), 1589–1591 (1998).
[Crossref]

Hillenkamp, M.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Hsu, C. H.

C. K. Lin, C. H. Hsu, and S. C. Kung, “Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron,” Appl. Surf. Sci. 284, 59–65 (2013).
[Crossref]

Huang, C. P.

Huang, H.

Huber, T. E.

T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
[Crossref]

Hung, W. H.

T. M. Chien and W. H. Hung, “Observation of strong plasmonic heating in Au-Fe2O3 nanocomposite,” Mater. Res. Express 1(1), 015009 (2014).
[Crossref]

Hunt, J. H.

T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
[Crossref]

Iacona, F.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[Crossref]

Jiang, L.

Y. Tian, L. Jiang, X. Zhang, Y. Deng, and S. Deng, “Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact,” Mater. Res. Express 1(3), 035034 (2014).
[Crossref]

Jiang, R.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Jimenez de Castro, M.

J. Toudert, R. Serna, and M. Jimenez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Johnson, S.

T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
[Crossref]

Jones, S. T.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Jouanin, A.

Kalyanaraman, R.

C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Robust nanopatterning by laser-induced dewetting of metal nanofilms,” Nanotechnology 17(16), 4229–4234 (2006).
[Crossref] [PubMed]

Kang, Y. S.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Kisslinger, K.

M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
[Crossref] [PubMed]

Kopev, P.

N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
[Crossref]

Kou, X.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Krull, U. J.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Kung, S. C.

C. K. Lin, C. H. Hsu, and S. C. Kung, “Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron,” Appl. Surf. Sci. 284, 59–65 (2013).
[Crossref]

Lagae, L.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Lalanne, P.

J. Yang, M. Perrin, and P. Lalanne, “Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators,” Phys. Rev. X 5(2), 021008 (2015).
[Crossref]

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880–16891 (2012).
[Crossref]

Laudenslager, M.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Lechuga, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Ledentsov, N.

N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
[Crossref]

Lee, D. H.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Lee, J.

M. Seol, E. Ramasamy, J. Lee, and K. Yong, “Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode,” J. Phys. Chem. C 115(44), 22018–22024 (2011).
[Crossref]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Lermé, J.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Li, B.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Li, Y.

G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation,” Nano Lett. 10(3), 1088–1092 (2010).
[Crossref] [PubMed]

Lin, C. K.

C. K. Lin, C. H. Hsu, and S. C. Kung, “Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron,” Appl. Surf. Sci. 284, 59–65 (2013).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Liu, M.

M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
[Crossref] [PubMed]

Liu, Q.

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

Liz-Marzán, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

López-Tejeira, F.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Mahmoud, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
[Crossref] [PubMed]

Manchon, D.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Miao, J.

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

Mora-Seró, I.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Moshchalkov, V. V.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Mukherjee, R.

R. Mukherjee, M. Gonuguntla, and A. Sharma, “Meso-patterning of thin polymer films by controlled dewetting: from nano-droplet arrays to membranes,” J. Nanosci. Nanotechnol. 7(6), 2069–2075 (2007).
[Crossref] [PubMed]

Mulvaney, P.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Nam, C.-Y.

M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
[Crossref] [PubMed]

Near, R. D.

R. D. Near, S. C. Hayden, and M. A. El-Sayed, “Thin to thick, short to long: spectral properties of gold nanorods by theoretical modeling,” J. Phys. Chem. C 117(36), 18653–18656 (2013).
[Crossref]

Nehl, C. L.

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[Crossref]

Ni, W.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Novo, C.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Paik, U.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Paniagua-Domínguez, R.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Park, W. I.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Pellarin, M.

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Pelouard, J.-L.

Perrin, M.

J. Yang, M. Perrin, and P. Lalanne, “Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators,” Phys. Rev. X 5(2), 021008 (2015).
[Crossref]

Petryayeva, E.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Priolo, F.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[Crossref]

Qian, F.

G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation,” Nano Lett. 10(3), 1088–1092 (2010).
[Crossref] [PubMed]

Ramasamy, E.

M. Seol, E. Ramasamy, J. Lee, and K. Yong, “Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode,” J. Phys. Chem. C 115(44), 22018–22024 (2011).
[Crossref]

Ratner, M. A.

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75(9), 096402 (2012).
[Crossref] [PubMed]

Rode, A.

E. Gamaly and A. Rode, “Electron-phonon energy relaxation in bismuth excited by ultrashort laser pulse: temperature and fluence dependence,” Appl. Phys., A Mater. Sci. Process. 110(3), 529–535 (2013).
[Crossref]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Sauvan, C.

Schatz, G. C.

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75(9), 096402 (2012).
[Crossref] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Scherman, O. A.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Scott, R.

T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
[Crossref]

Seol, M.

M. Seol, E. Ramasamy, J. Lee, and K. Yong, “Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode,” J. Phys. Chem. C 115(44), 22018–22024 (2011).
[Crossref]

Sepúlveda, B.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Serna, R.

J. Toudert, R. Serna, and M. Jimenez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Sharma, A.

R. Mukherjee, M. Gonuguntla, and A. Sharma, “Meso-patterning of thin polymer films by controlled dewetting: from nano-droplet arrays to membranes,” J. Nanosci. Nanotechnol. 7(6), 2069–2075 (2007).
[Crossref] [PubMed]

Shchukin, V.

N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
[Crossref]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Sigmund, W. M.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Sommerdijk, N. A.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Song, T.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Spinella, C.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[Crossref]

Su, D.

M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
[Crossref] [PubMed]

Sudhagar, P.

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

Sun, X.

Z. Zhang, X. Sun, M. Dresselhaus, J. Y. Ying, and J. P. Heremans, “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Appl. Phys. Lett. 73(11), 1589–1591 (1998).
[Crossref]

Sun, Y.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Sureshkumar, R.

C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Robust nanopatterning by laser-induced dewetting of metal nanofilms,” Nanotechnology 17(16), 4229–4234 (2006).
[Crossref] [PubMed]

Tao, J.

M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
[Crossref] [PubMed]

Taylor, R. W.

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Tian, Y.

Y. Tian, L. Jiang, X. Zhang, Y. Deng, and S. Deng, “Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact,” Mater. Res. Express 1(3), 035034 (2014).
[Crossref]

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

Toudert, J.

J. Toudert, R. Serna, and M. Jimenez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Ustinov, V.

N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
[Crossref]

Van Dorpe, P.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Vercruysse, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Wang, G.

G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation,” Nano Lett. 10(3), 1088–1092 (2010).
[Crossref] [PubMed]

Wang, J.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Wang, Q.

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

Wang, Y.

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Wu, Z.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Xiong, T.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Yang, J.

J. Yang, M. Perrin, and P. Lalanne, “Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators,” Phys. Rev. X 5(2), 021008 (2015).
[Crossref]

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20(15), 16880–16891 (2012).
[Crossref]

Yang, X.

G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation,” Nano Lett. 10(3), 1088–1092 (2010).
[Crossref] [PubMed]

Yang, Z.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

Yin, X. G.

Ying, J. Y.

Z. Zhang, X. Sun, M. Dresselhaus, J. Y. Ying, and J. P. Heremans, “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Appl. Phys. Lett. 73(11), 1589–1591 (1998).
[Crossref]

Yong, K.

M. Seol, E. Ramasamy, J. Lee, and K. Yong, “Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode,” J. Phys. Chem. C 115(44), 22018–22024 (2011).
[Crossref]

Zhang, J. Z.

G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation,” Nano Lett. 10(3), 1088–1092 (2010).
[Crossref] [PubMed]

Zhang, L.

M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
[Crossref] [PubMed]

Zhang, X.

Y. Tian, L. Jiang, X. Zhang, Y. Deng, and S. Deng, “Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact,” Mater. Res. Express 1(3), 035034 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, X. Sun, M. Dresselhaus, J. Y. Ying, and J. P. Heremans, “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Appl. Phys. Lett. 73(11), 1589–1591 (1998).
[Crossref]

Zhao, Z.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Zhou, Y.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Zhu, Y. Y.

ACS Nano (2)

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2(4), 677–686 (2008).
[Crossref] [PubMed]

N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, and M. Pellarin, “Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding,” ACS Nano 5(12), 9450–9462 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

AIP Adv. (1)

Y. Tian, C. Fei Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, and Q. Liu, “Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage,” AIP Adv. 2(1), 012112 (2012).
[Crossref]

Anal. Chim. Acta (1)

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

Z. Zhang, X. Sun, M. Dresselhaus, J. Y. Ying, and J. P. Heremans, “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Appl. Phys. Lett. 73(11), 1589–1591 (1998).
[Crossref]

T. E. Huber, R. Scott, S. Johnson, T. Brower, J. H. Belk, and J. H. Hunt, “Photoresponse in arrays of thermoelectric nanowire junctions,” Appl. Phys. Lett. 103(4), 041114 (2013).
[Crossref]

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

E. Gamaly and A. Rode, “Electron-phonon energy relaxation in bismuth excited by ultrashort laser pulse: temperature and fluence dependence,” Appl. Phys., A Mater. Sci. Process. 110(3), 529–535 (2013).
[Crossref]

Appl. Surf. Sci. (1)

C. K. Lin, C. H. Hsu, and S. C. Kung, “Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron,” Appl. Surf. Sci. 284, 59–65 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004).
[Crossref]

J. Mater. Chem. (1)

C. L. Nehl and J. H. Hafner, “Shape-dependent plasmon resonances of gold nanoparticles,” J. Mater. Chem. 18(21), 2415–2419 (2008).
[Crossref]

J. Nanosci. Nanotechnol. (1)

R. Mukherjee, M. Gonuguntla, and A. Sharma, “Meso-patterning of thin polymer films by controlled dewetting: from nano-droplet arrays to membranes,” J. Nanosci. Nanotechnol. 7(6), 2069–2075 (2007).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

J. Phys. Chem. C (3)

J. Toudert, R. Serna, and M. Jimenez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

M. Seol, E. Ramasamy, J. Lee, and K. Yong, “Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode,” J. Phys. Chem. C 115(44), 22018–22024 (2011).
[Crossref]

R. D. Near, S. C. Hayden, and M. A. El-Sayed, “Thin to thick, short to long: spectral properties of gold nanorods by theoretical modeling,” J. Phys. Chem. C 117(36), 18653–18656 (2013).
[Crossref]

J. Phys. Chem. Lett. (2)

P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik, and Y. S. Kang, “High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures,” J. Phys. Chem. Lett. 2(16), 1984–1990 (2011).
[Crossref]

M. A. Mahmoud and M. A. El-Sayed, “Different plasmon sensing behavior of silver and gold nanorods,” J. Phys. Chem. Lett. 4(9), 1541–1545 (2013).
[Crossref] [PubMed]

Mater. Res. Express (2)

T. M. Chien and W. H. Hung, “Observation of strong plasmonic heating in Au-Fe2O3 nanocomposite,” Mater. Res. Express 1(1), 015009 (2014).
[Crossref]

Y. Tian, L. Jiang, X. Zhang, Y. Deng, and S. Deng, “Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact,” Mater. Res. Express 1(3), 035034 (2014).
[Crossref]

Nano Lett. (6)

M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, “Surface-energy induced formation of single crystalline bismuth nanowires over vanadium thin film at room temperature,” Nano Lett. 14(10), 5630–5635 (2014).
[Crossref] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, “Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation,” Nano Lett. 10(3), 1088–1092 (2010).
[Crossref] [PubMed]

Nano Today (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009).
[Crossref]

Nanotechnology (1)

C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Robust nanopatterning by laser-induced dewetting of metal nanofilms,” Nanotechnology 17(16), 4229–4234 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Opt. Express (2)

Phys. Rev. X (1)

J. Yang, M. Perrin, and P. Lalanne, “Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators,” Phys. Rev. X 5(2), 021008 (2015).
[Crossref]

Rep. Prog. Phys. (1)

H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys. 75(9), 096402 (2012).
[Crossref] [PubMed]

Semiconductors (1)

N. Ledentsov, V. Ustinov, V. Shchukin, P. Kopev, Z. I. Alferov, and D. Bimberg, “Quantum dot heterostructures: fabrication, properties, lasers (Review),” Semiconductors 32(4), 343–365 (1998).
[Crossref]

Small (1)

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, “Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications,” Small 10(21), 4298–4303 (2014).
[PubMed]

Other (4)

B. Bhushan, Springer handbook of nanotechnology (Springer Science & Business Media, 2010).

L. Enke, Z. Bingsheng, and L. Jinsheng, Semiconductor Physics (Beijing: Publishing House of Electronics Industry, 2003).

K. Seshan, Handbook of Thin Film Deposition (Elsevier, 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) schematic illustration and (b) SEM images of BSHSs formed on the substrate, and the inset of Fig. 1b is the morphology of single BSHS ; (c) statistics of the size of BSHS.
Fig. 2
Fig. 2 (a) TEM (b) EDX and (c) ED results of BSHS; (d) HRTEM of Si ND on the surface of BSHS; (e) atomic structure of Si view along [111] direction; (f) FFT of HRTEM image of Si ND with indexed lattice plane. (Note: the lattice spacing of (009) plane of Bi is very close to that of (300) plane, and the lattice spacing difference between (306) and (223) planes of Bi is also rather few. On the other hand, the diffraction from (220), (400) and (422) planes of Si could be respective overlapped with (202), (018) and (306)/(223) planes of Bi, etc.)
Fig. 3
Fig. 3 (a) Bi-Si phase diagram; (b) temporal evolution of the growth of Bi NRs; (c)schematic illustration to the formation of BSHS ; (d) initial stage of the deposition of Bi on Si.
Fig. 4
Fig. 4 (a) schematic illustration of perpendicular-polarized stimulation and (b) schematic illustration of parallel-polarized stimulation; (c) extinction, (d) absorption and (e) scatter cross section of BSHS (solid line) and Bi NR (dash line) under perpendicular-polarized stimulation; (f) extinction, (g) absorption and (h) scatter cross section of BSHS (solid line) and Bi NR (dash line) under parallel-polarized stimulation.
Fig. 5
Fig. 5 Electrical field intensity distribution of SPRs of BSHS/Bi NR: (a) STTR of Bi NR under perpendicular-polarized stimulation; (b) LSPR of Bi NR under parallel-polarized stimulation; (c) STTR of BSHS under perpendicular-polarized stimulation; (d) LSPR1 and (e) LSPR2 of BSHS under parallel-polarized stimulation; Schematic illustration for the generation of (f) shift and (g) split of SPR modes in BSHS. (The black arrows represent the direction of the electrical field of stimulation light; the red arrows represent the direction of the electrical field of SPR).
Fig. 6
Fig. 6 (a) The field profile of 3rd longitudinal resonance between BSHS and Bi NR (the black arrows represent the direction of the electrical field of the stimulation light, the red arrows represent the direction of the electrical field of SPR. The field profile near the nodes (marked by red rectangular boxes) in BSHS is replotted with tuned color bar to provide better eyes-view); (b) extinction, absorption and scattering cross-section of Bi NR in the background refractive index of 1.35.
Fig. 7
Fig. 7 FDTD simulation to SPRs of BSHS. (a) extinction, (b) absorption and (c) scattering spectra depending on AR under perpendicular-polarized stimulation (the diameter is fixed as 71 nm); (d) extinction, (e) absorption and (f) scatter spectra depending on diameter under perpendicular-polarized stimulation (AR is fixed as 3.46); (g) extinction, (h) absorption and (i) scatter spectra depending on AR under parallel-polarized stimulation (the diameter is fixed as 71 nm); (j) extinction, (k) absorption and (l) scatter spectra depending on diameter under parallel-polarized stimulation (AR is fixed as 3.46).
Fig. 8
Fig. 8 SPR wavelength of BSHS depending on (a) AR and (b) diameter predicted by Gans theory (dash line, extracted from the contour plot is the SPR spectra of BSHS with AR from 1.5 to 5.5) and/or LC model (solid line). The results of FDTD simulation (symbols) are presented as a comparison.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ m 2 n eff (λ)l m (m=1,2,3...)
λ 3 1 3 n eff ( λ 3 ) n eff ( λ 1 ) λ 1 > 1 3 λ 1 (300nm)
σ ext = 2πV ε m 3/2 3λ j (1/ P j 2 ) ε 2 ( ε 1 + 1 P j P j ε m ) 2 + ε 2 2 V
P A = 1 e 2 e 2 [ 1 2e ln( 1+e 1e )1]
P B = P c = 1 P A 2
e= 1A R 2 .
λ LSPR =2π n m AR[2 δ 2 + ( d 2 ) 2 ln(AR)]

Metrics