Abstract

Eu3+-doped Gd2O2CN2 was firstly synthesized by a classical solid-state reaction of Li2CO3, Eu2O3 and GdF3 under NH3 gas flow in the presence of graphite at low firing temperature. Powder X-ray diffraction (XRD) analysis indicated that Gd2O2CN2: Eu3+ crystallizes in a trigonal-type structure with space group P-3m1. Gd2O2CN2: Eu3+ shows a sharp red emission band peaking at 626 nm under excitation at 300 nm at room temperature. PL spectra indicates that Eu3+ doped Gd2O2CN2 samples emit the typical emission peaks at 614 nm and 626 nm originated from the hypersensitive electric dipole transition (5D07F2) of Eu3+ ions. The optimized doping concentration of Eu3+ ions was found to be 7.5 at. %, and the critical transfer distance was calculated to be 10.907 Å.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Luminescence properties of lutetium based red-emitting phosphor NaLu(WO4)2:Eu3+

Zijun Wang, Jiuping Zhong, Hongbin Liang, and Jing Wang
Opt. Mater. Express 3(3) 418-425 (2013)

Preparation, structural and luminescent properties of Ba2Gd2Si4O13:Eu3+ for white LEDs

Hai Guo, Hao Zhang, RongFei Wei, MengDi Zheng, and LiHong Zhang
Opt. Express 19(S2) A201-A206 (2011)

The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications

Yanlin Huang, Yosuke Nakai, Taiju Tsuboi, and Hyo Jin Seo
Opt. Express 19(7) 6303-6311 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
    [Crossref]
  2. T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
    [Crossref]
  3. V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
  4. Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
    [Crossref]
  5. Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
    [Crossref]
  6. V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
    [Crossref]
  7. S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
    [Crossref]
  8. C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
    [Crossref]
  9. J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
    [Crossref]
  10. C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
    [Crossref]
  11. Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
    [Crossref]
  12. J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
    [Crossref]
  13. X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
    [Crossref]
  14. X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
    [Crossref]
  15. T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
    [Crossref]
  16. Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
    [Crossref]
  17. Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
    [Crossref]
  18. P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin. 111, 89–104 (2005).
    [Crossref]
  19. J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
    [Crossref]
  20. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
  21. S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).
  22. G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A 28(6), 444–445 (1968).
    [Crossref]
  23. X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
    [Crossref]

2015 (3)

Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]

V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

2014 (2)

X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]

X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]

2012 (1)

V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).

2011 (1)

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

2009 (1)

Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]

2008 (1)

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]

2007 (1)

J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]

2006 (1)

T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]

2005 (4)

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]

P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin. 111, 89–104 (2005).
[Crossref]

J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]

S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).

2004 (1)

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]

2001 (1)

C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]

1998 (1)

J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]

1996 (1)

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]

1995 (1)

Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]

1994 (1)

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]

1968 (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A 28(6), 444–445 (1968).
[Crossref]

Bae, J. S.

S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).

Bettentrup, H.

J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]

Bhatkar, V. B.

V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]

Blasse, G.

G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A 28(6), 444–445 (1968).
[Crossref]

Cheetham, A. K.

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]

Chen, T.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]

Chiou, B. S.

C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]

Chou, T. W.

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]

Chuang, S. Z.

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]

Dong, X.

X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]

Dong, X. T.

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]

Dong, Y.

Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]

Dorenbos, P.

P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin. 111, 89–104 (2005).
[Crossref]

Duh, J. G.

C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]

Fountos, G. P.

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

Glaser, J.

J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]

Guo, C. F.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]

Guo, X. M.

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]

Hashimoto, Y.

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]

Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]

Hatta, N.

T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]

Hedaoo, V. P.

V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]

Hölsä, J.

J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]

Huang, D. X.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]

Jeong, J. H.

S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).

Jiang, J. Q.

Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]

Jose, M. T.

V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).

Jüstel, T.

J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]

Kalpana, S.

V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).

Kalyvas, N. I.

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

Kanamaru, F.

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]

Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]

Kandarakis, I. S.

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

Kijima, N.

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]

Kikkawa, S.

T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]

Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]

Kim, J. H.

S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).

Kuang, J. Y.

J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]

Kumar, R. S.

V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).

Lakshmanan, A.

V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).

Lamminmäki, R.-J.

J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]

Lastusaari, M.

J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]

Li, H. J.

Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]

Liaparinos, P. F.

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

Liu, G. X.

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]

Liu, L.

Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]

Liu, R. S.

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]

Liu, Y. L.

J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]

Lo, C. L.

C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]

Lu, X.

X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]

Luan, L.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]

Ma, Q.

X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]

Ma, Q. L.

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

Meyer, H.-J.

J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]

Michail, C. M.

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

Moon, B. K.

S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).

Mylswamy, S.

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]

Neeraj, S.

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]

Omanwar, S. K.

V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]

Ozawa, L.

C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]

Panayiotakis, G. S.

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

Peng, C. C.

C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]

Porcher, P.

J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]

Rani, R. S.

V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).

Säilynoja, E.

J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]

Shao, Q. Y.

Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]

Sindlinger, J.

J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]

Sivakumar, V.

V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).

Song, S. T.

Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]

Takahashi, M.

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]

Takahshi, M.

Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]

Takeda, T.

T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]

Tian, J.

X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]

Valais, I. G.

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

Wang, D. J.

Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]

Wang, J. X.

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]

Wu, K. W.

Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]

Yang, L.

X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]

Yang, M.

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

Yi, S. S.

S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).

Yu, W. S.

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]

Yuan, D. S.

J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]

Zhang, J. P.

Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]

Zhang, W.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]

Zhang, Z. W.

Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).

Chem. Lett. (2)

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]

T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]

CrystEngComm (1)

X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]

Curr. Appl. Phys. (1)

Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]

Electrochem. Solid-State Lett. (1)

J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]

Eur. J. Inorg. Chem. (1)

X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]

Indian J. Pure Appl. Phys. (1)

V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).

J. Alloys Compd. (1)

J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]

J. Lumin. (2)

Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]

P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin. 111, 89–104 (2005).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]

J. Phys. Chem. Solids (1)

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]

J. Solid State Chem. (2)

Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]

Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]

Mater. Chem. Phys. (1)

C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]

Opt. Mater. (1)

V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]

Phys. Lett. A (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A 28(6), 444–445 (1968).
[Crossref]

Solid State Commun. (2)

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]

Z. Anorg. Allg. Chem. (1)

J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]

Other (1)

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XRD patterns of (Gd1-xEux)2O2CN2 (x = 0.005, 0.02, 0.035, 0.050, 0.075, 0.100) with PDF standard card of Gd2O2CN2.
Fig. 2
Fig. 2 FTIR spectra of (Gd1-xEux)2O2CN2 (x = 0.005, 0.02, 0.035, 0.05, 0.075, 0.10) samples.
Fig. 3
Fig. 3 (Left) SEM image of Gd1.80Eu0.2O2CN2(a), Gd1.90Eu0.1O2CN2 (c) and Gd1.85Eu0.15O2CN2 (e) at low-magnification (5.00K). (Right) SEM image of Gd1.80Eu0.2O2CN2 (b) Gd1.90Eu0.1O2CN2 (d) and Gd1.85Eu0.15O2CN2 (f) at high-magnification (50.0K).
Fig. 4
Fig. 4 EDS spectra of Gd1.90Eu0.1O2CN2 sample.
Fig. 5
Fig. 5 Excitation (a) and Emission (b) spectra of the Gd1.85Eu0.15O2CN2 sample. The right inset is the photograph image of the Eu3+-doped sample being excited by the 300 nm lights.
Fig. 6
Fig. 6 Excitation (a) and emission (b) spectra of (Gd1-xEux)2O2CN2 (x = 0.005, 0.02, 0.035, 0.05, 0.075, 0.100) samples. The inset is the dependence of its PL intensity on the Eu3+ content in the Gd2O2CN2 matrix.
Fig. 7
Fig. 7 CIE chromaticity coordinates diagram for Gd1.85Eu0.15O2CN2 under the excitation of 467-nm light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 ( 1 x ) G d F 3 + x E u 2 O 3 + 3 ( 1 x ) L i 2 C O 3 + C + 2 N H 3 ( G d 1 x E u x ) 2 O 2 C N 2 + 6 ( 1 x ) L i F + 3 ( 1 x ) C O 2 + H 2 O + 2 H 2
R c = 2 × ( 3 V / 4 π X c N ) 1 / 3

Metrics