Abstract

In recent years, plasmonic hydrogen sensing schemes using complex hybrid Pd@Au nanostructures have attracted significant attention. However, so far, most studies have focused on investigating the sensing performance of nanosensor geometries where the constituent materials are laterally coupled. In contrast to such planar hybrid systems, which often require complex multi-step fabrication approaches, sensing devices where the materials are stacked directly on top of each other can be fabricated in a single lithography step, enabling straightforward high-throughput processing. Here, we demonstrate a novel hydrogen sensing scheme which incorporates complex hybrid plasmonic nanostructures consisting of stacked gold and palladium nanodisks. In particular, we study the influence of stacking order and geometry, experimentally and numerically, to find an optimal arrangement for a hydrogen sensor device. With an optimized sensing geometry – a stack of gold as lower and palladium as upper disk – we obtain spectral shifts as large as 30 nm at 4 vol.% H2, which is a strong improvement compared to previous indirect sensing designs. Our samples yield large absorption and scattering signals and are fabricated by low-cost hole-mask colloidal lithography and therefore yield sample sizes over areas of 1 cm2.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexandra Boltasseva and Jennifer Dionne, "Plasmonics feature issue: publisher’s note," Opt. Mater. Express 5, 2978-2978 (2015)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-5-12-2978

24 November 2015: A correction was made to the title.


OSA Recommended Articles
Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity

Arindam Dasgupta and G. V. Pavan Kumar
Appl. Opt. 51(11) 1688-1693 (2012)

Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications

Nikolai Strohfeldt, Andreas Tittl, and Harald Giessen
Opt. Mater. Express 3(2) 194-204 (2013)

Spectral shifts in optical nanoantenna-enhanced hydrogen sensors

Andreas Tittl, Christian Kremers, Jens Dorfmüller, Dmitry N. Chigrin, and Harald Giessen
Opt. Mater. Express 2(2) 111-118 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
    [Crossref] [PubMed]
  2. A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3(3), 157–180 (2014).
    [Crossref]
  3. C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
    [Crossref] [PubMed]
  4. E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
    [Crossref]
  5. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
    [Crossref] [PubMed]
  6. C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10(9), 3529–3538 (2010).
    [Crossref] [PubMed]
  7. M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc. 133(34), 13220–13223 (2011).
    [Crossref] [PubMed]
  8. A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
    [PubMed]
  9. N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
    [Crossref]
  10. R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive plasmonic response of bimetallic Au/Pd nanostructures to hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
    [Crossref]
  11. F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
    [Crossref]
  12. F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
    [Crossref] [PubMed]
  13. M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
    [Crossref] [PubMed]
  14. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  15. T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
    [Crossref] [PubMed]
  16. S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
    [Crossref] [PubMed]
  17. A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
    [Crossref] [PubMed]
  18. C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
    [Crossref] [PubMed]
  19. T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C 116(38), 20522 (2012).
    [Crossref]
  20. T. Shegai and C. Langhammer, “Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
    [Crossref] [PubMed]
  21. K. Ikeda, S. Uchiyama, M. Takase, and K. Murakoshi, “Hydrogen-induced tuning of plasmon resonance in palladium–silver layered nanodimer arrays,” ACS Photonics 2(1), 66–72 (2015).
    [Crossref]
  22. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
    [Crossref] [PubMed]
  23. J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
    [Crossref] [PubMed]
  24. A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
    [Crossref] [PubMed]
  25. R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. Ser. 6 4(21), 396–402 (1902).
    [Crossref]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  27. K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85(1), 408 (1999).
    [Crossref]
  28. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
    [Crossref] [PubMed]
  29. N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
    [Crossref]
  30. A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
    [Crossref] [PubMed]
  31. R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
    [Crossref] [PubMed]
  32. C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
    [Crossref]
  33. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  34. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
    [Crossref]

2015 (2)

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

K. Ikeda, S. Uchiyama, M. Takase, and K. Murakoshi, “Hydrogen-induced tuning of plasmon resonance in palladium–silver layered nanodimer arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

2014 (12)

J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
[Crossref]

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3(3), 157–180 (2014).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive plasmonic response of bimetallic Au/Pd nanostructures to hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

2013 (3)

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
[Crossref]

2012 (4)

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C 116(38), 20522 (2012).
[Crossref]

2011 (6)

T. Shegai and C. Langhammer, “Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc. 133(34), 13220–13223 (2011).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

2010 (1)

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10(9), 3529–3538 (2010).
[Crossref] [PubMed]

2009 (1)

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
[Crossref]

2007 (1)

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

2006 (1)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

1999 (1)

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85(1), 408 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1902 (1)

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. Ser. 6 4(21), 396–402 (1902).
[Crossref]

Alivisatos, A. P.

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc. 133(34), 13220–13223 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Ang, L. K.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Antosiewicz, T. J.

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C 116(38), 20522 (2012).
[Crossref]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C 116(38), 20522 (2012).
[Crossref]

Baldi, A.

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

Banach, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Bardhan, R.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Braun, P. V.

J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Cardinal, M. F.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Cataldo, S.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Chigrin, D. N.

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Clemens, B. M.

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

Dahlin, A. B.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Delaunay, J.-J. J.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
[Crossref]

Dickson, W.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

Ding, B.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Dionne, J. A.

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc. 133(34), 13220–13223 (2011).
[Crossref] [PubMed]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Duine, P. A.

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85(1), 408 (1999).
[Crossref]

Endo, K.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
[Crossref]

Frank, B.

J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Giessen, H.

J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3(3), 157–180 (2014).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
[Crossref]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Gu, F.

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Harats, M. G.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Hedges, L. O.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Höök, F.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Hübert, T.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Huntington, M. D.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Ikeda, K.

K. Ikeda, S. Uchiyama, M. Takase, and K. Murakoshi, “Hydrogen-induced tuning of plasmon resonance in palladium–silver layered nanodimer arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Javey, A.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Jiang, R.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive plasmonic response of bimetallic Au/Pd nanostructures to hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Jin, C.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive plasmonic response of bimetallic Au/Pd nanostructures to hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Johansson, P.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Käll, M.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

Kasemo, B.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10(9), 3529–3538 (2010).
[Crossref] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

Koh, A. L.

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

Kremers, C.

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

Langhammer, C.

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
[Crossref]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C 116(38), 20522 (2012).
[Crossref]

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

T. Shegai and C. Langhammer, “Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
[Crossref] [PubMed]

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10(9), 3529–3538 (2010).
[Crossref] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

Larsson, E. M.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10(9), 3529–3538 (2010).
[Crossref] [PubMed]

Li, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Liu, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3(3), 157–180 (2014).
[Crossref]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc. 133(34), 13220–13223 (2011).
[Crossref] [PubMed]

Maeda, E.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
[Crossref]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Masango, S. S.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Mikuriya, S.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
[Crossref]

Murakoshi, K.

K. Ikeda, S. Uchiyama, M. Takase, and K. Murakoshi, “Hydrogen-induced tuning of plasmon resonance in palladium–silver layered nanodimer arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Narayan, T. C.

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

Nasir, M. E.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

Neubrech, F.

J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Odom, T. W.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Olsson, E.

C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
[Crossref]

Pingel, T.

C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
[Crossref]

Pint, C. L.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Qin, F.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive plasmonic response of bimetallic Au/Pd nanostructures to hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Rapaport, R.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Ruan, Q.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive plasmonic response of bimetallic Au/Pd nanostructures to hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Rubin, M.

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85(1), 408 (1999).
[Crossref]

Schäferling, M.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Shegai, T.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

T. Shegai and C. Langhammer, “Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
[Crossref] [PubMed]

Song, C.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Strohfeldt, N.

Suda, A.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
[Crossref]

Syrenova, S.

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

Takase, M.

K. Ikeda, S. Uchiyama, M. Takase, and K. Murakoshi, “Hydrogen-induced tuning of plasmon resonance in palladium–silver layered nanodimer arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Tang, M. L.

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc. 133(34), 13220–13223 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Tegenfeldt, J. O.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Tian, X.-D.

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

Tian, Z.-Q.

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

Tittl, A.

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3(3), 157–180 (2014).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

Uchiyama, S.

K. Ikeda, S. Uchiyama, M. Takase, and K. Murakoshi, “Hydrogen-induced tuning of plasmon resonance in palladium–silver layered nanodimer arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Urban, J. J.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Van Duyne, R. P.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

von Rottkay, K.

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85(1), 408 (1999).
[Crossref]

Wadell, C.

C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
[Crossref]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C 116(38), 20522 (2012).
[Crossref]

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

Walter, R.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Wang, J.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive plasmonic response of bimetallic Au/Pd nanostructures to hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Wardley, W. P.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

Whitelam, S.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Wood, R. W.

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. Ser. 6 4(21), 396–402 (1902).
[Crossref]

Wu, G.

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

Wurtz, G. A.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

Yamada, I.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
[Crossref]

Yang, A.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Yang, Q.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Yin, X.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

Yue, S.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Zayats, A. V.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

Zeng, H.

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Zhang, C.

J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Zhdanov, V. P.

C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
[Crossref]

Zhu, Y. B.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Zhuang, S.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Zoric, I.

C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
[Crossref]

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10(9), 3529–3538 (2010).
[Crossref] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

ACS Nano (4)

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

K. Ikeda, S. Uchiyama, M. Takase, and K. Murakoshi, “Hydrogen-induced tuning of plasmon resonance in palladium–silver layered nanodimer arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Adv. Funct. Mater. (1)

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive plasmonic response of bimetallic Au/Pd nanostructures to hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Adv. Mater. (2)

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

T. Shegai and C. Langhammer, “Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Anal. Chem. (1)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J.-J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95(13), 133504 (2009).
[Crossref]

Beilstein J. Nanotechnol. (1)

J. Zhao, B. Frank, F. Neubrech, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials,” Beilstein J. Nanotechnol. 5, 577–586 (2014).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

C. Wadell, T. Pingel, E. Olsson, I. Zorić, V. P. Zhdanov, and C. Langhammer, “Thermodynamics of hydride formation and decomposition in supported sub-10nm Pd nanoparticles of different sizes,” Chem. Phys. Lett. 603, 75–81 (2014).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

M. L. Tang, N. Liu, J. A. Dionne, and A. P. Alivisatos, “Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals,” J. Am. Chem. Soc. 133(34), 13220–13223 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85(1), 408 (1999).
[Crossref]

J. Phys. Chem. C (1)

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C 116(38), 20522 (2012).
[Crossref]

Light Sci. Appl. (1)

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Nano Lett. (7)

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

A. Tittl, X. Yin, H. Giessen, X.-D. Tian, Z.-Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible and its applications to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[Crossref] [PubMed]

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10(9), 3529–3538 (2010).
[Crossref] [PubMed]

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

A. Tittl, H. Giessen, and N. Liu, “Plasmonic gas and chemical sensing,” Nanophotonics 3(3), 157–180 (2014).
[Crossref]

Nanoscale (1)

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

Nat. Mater. (3)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Philos. Mag. Ser. 6 (1)

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. Ser. 6 4(21), 396–402 (1902).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Sens. Actuators B Chem. (1)

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the different palladium-gold nanodisk systems under investigation. The stacking sequence of gold and palladium is varied.

Fig. 2
Fig. 2

Simulated and measured spectra of the nano-sandwich structures with (red curves) and without hydrogen (blue curves). (a) Exemplary SEM image of the Pd-Au system. (b) Single particle scattering FEM simulation of the Pd-Au system using tabulated Pd and PdH data. The spectra display a redshift and broadening when going from Pd to PdH. (c) Extinction measurements of the fabricated system showing the same qualitative behavior as the simulations. (d) – (i) SEM images, simulation and measurement data for the other two sandwich systems.

Fig. 3
Fig. 3

(a) Exemplary time trace of the centroid wavelength shifts upon a sequence of hydrogen gas exposure, going from 0.5 – 5 vol.% hydrogen in nitrogen for the Au-Pd system. (b) Extracted loading times for different hydrogen concentrations for all three sensing geometries. Note, the exceptionally high loading time for 2 vol.% H2 observed in all systems is related to a phase transition from α- to β-phase in Pd. (c) Extracted unloading times for the same concentration steps as in (b) for all three sensing geometries. All systems show a distinct reaction to the different hydrogen concentrations, where the Au-Pd system performs the fastest in both loading and unloading times (<100s, except at 2 vol.%).

Fig. 4
Fig. 4

(a) Calculated single particle scattering spectra for the Au-Pd (green) and Pd-Au system (red) in the hydrogenated (dashed lines) and unhydrogenated states (solid lines). The Au-Pd system exhibits a stronger resonance and is slightly blue-shifted when compared to the Pd-Au system. Nevertheless, both systems show a red-shift and broadening of the resonance when going to the hydrogenated state. Additional spectra for a sole Au (dark yellow shaded) and Pd disk (light blue shaded area) are included for comparison. (b) Calculated current densities for the Pd-Au system at the resonance frequency showing strong optical currents in the palladium nanodisk. (c) Calculated absolute electric fields together with the field vectors for the same geometry and frequency as in (b), depicting the strongest field at the bottom edge of the structure and in-phase oscillations in the Au and Pd disks. (d) and (e) display the current densities and electric fields of the Au-Pd system which exhibit notably enhanced fields and currents in the Au disk, compared to the geometry in (b) and (c).

Fig. 5
Fig. 5

(a) Calculated single particle scattering spectra of the Au-Pd-Au disk stack in the unhydrogenated (blue solid line) and hydrogenated state (blue dashed line), demonstrating that the structure exhibits a blue-shift and signal increase compared to the respective two disk structure (Au-Pd). The spectra of the two disk stacks and single disks are also plotted (green and red lines) for comparison. (b) Calculated absolute electric fields together with the field vectors for the Au-Pd-Au structure on SiO2. The field vectors show that, at resonance, the electric field oscillates in phase in all three disks, resulting in a collective resonance for all the particles. (c) Calculated current densities for the same structure.

Metrics