Abstract

We propose and analyze theoretically an approach for realizing a tunable optical phased-array antenna utilizing the properties of VO2 for electronic beam steering applications in the near-IR spectral range. The device is based on a 1D array of slot nano-antennas engraved in a thin Au film grown over VO2 layer. The tuning is obtained by inducing a temperature gradient over the device, which changes the refractive index of the VO2, and hence modifies the phase response of the elements comprising the array, by producing a thermal gradient within the underlying PCM layer. Using a 10-element array, we show that an incident beam can be steered up to ±22° with respect to the normal, by applying a gradient of less than 10°C.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexandra Boltasseva and Jennifer Dionne, "Plasmonics feature issue: publisher’s note," Opt. Mater. Express 5, 2978-2978 (2015)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-5-12-2978

24 November 2015: A correction was made to the title.


OSA Recommended Articles
Electrical control of terahertz nano antennas on VO2 thin film

Young-Gyun Jeong, Hannes Bernien, Ji-Soo Kyoung, Hyeong-Ryeol Park, Hyun-Sun Kim, Jae-Wook Choi, Bong-Jun Kim, Hyun-Tak Kim, Kwang Jun Ahn, and Dai-Sik Kim
Opt. Express 19(22) 21211-21215 (2011)

Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition

Ryan M. Briggs, Imogen M. Pryce, and Harry A. Atwater
Opt. Express 18(11) 11192-11201 (2010)

Tunable optical antennas enabled by the phase transition in vanadium dioxide

Stuart K. Earl, Timothy D. James, Timothy J. Davis, Jeffrey C. McCallum, Robert E. Marvel, Richard F. Haglund, and Ann Roberts
Opt. Express 21(22) 27503-27508 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
    [Crossref]
  2. J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
    [Crossref]
  3. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
    [Crossref] [PubMed]
  4. Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
    [Crossref] [PubMed]
  5. P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
    [Crossref] [PubMed]
  6. K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  7. J. Yang, H. Giessen, and P. Lalanne, “Simple Analytical Expression for the Peak-Frequency Shifts of Plasmonic Resonances for Sensing,” Nano Lett. 15(5), 3439–3444 (2015).
    [Crossref] [PubMed]
  8. W. Zhang and O. J. F. Martin, “A Universal Law for Plasmon Resonance Shift in Biosensing,” ACS Photonics 2(1), 144–150 (2015).
    [Crossref]
  9. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the Plasmon Resonances of Metallic Nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
    [Crossref] [PubMed]
  10. A. Pors, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27(8), 1680 (2010).
    [Crossref]
  11. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [Crossref]
  12. Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett. 38(2), 205–207 (2013).
    [Crossref] [PubMed]
  13. W. A. Murray, B. Auguié, and W. L. Barnes, “Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment,” J. Phys. Chem. C 113(13), 5120–5125 (2009).
    [Crossref]
  14. X. Ren, W. E. I. Sha, and W. C. H. Choy, “Tuning optical responses of metallic dipole nanoantenna using graphene,” Opt. Express 21(26), 31824–31829 (2013).
    [Crossref] [PubMed]
  15. C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
    [Crossref]
  16. F. Huang and J. J. Baumberg, “Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers,” Nano Lett. 10(5), 1787–1792 (2010).
    [Crossref] [PubMed]
  17. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
    [Crossref] [PubMed]
  18. A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
    [Crossref] [PubMed]
  19. A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
    [Crossref] [PubMed]
  20. L. Zou, M. Cryan, and M. Klemm, “Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects,” Opt. Express 22(20), 24142–24148 (2014).
    [Crossref] [PubMed]
  21. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  22. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  23. C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, “Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas,” Opt. Express 21(4), 5198–5208 (2013).
    [Crossref] [PubMed]
  24. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  25. J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
    [Crossref] [PubMed]
  26. F. Zhou, Y. Liu, and W. Cai, “Plasmonic holographic imaging with V-shaped nanoantenna array,” Opt. Express 21(4), 4348–4354 (2013).
    [Crossref] [PubMed]
  27. Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization Switchable Diffraction Based on Subwavelength Plasmonic Nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
    [Crossref] [PubMed]
  28. S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
    [Crossref] [PubMed]
  29. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  30. W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
    [Crossref] [PubMed]
  31. J. Scheuer and Y. Yifat, “Holography: Metasurfaces make it practical,” Nat. Nanotechnol. 10(4), 296–298 (2015).
    [Crossref] [PubMed]
  32. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  33. Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
    [Crossref]
  34. C. N. Berglund and H. J. Guggenheim, “Electronic Properties of VO2 near the Semiconductor-Metal Transition,” Phys. Rev. 185(3), 1022–1033 (1969).
    [Crossref]
  35. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  36. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
    [Crossref]
  37. V. L. Gal’Perin, I. A. Khakhaev, F. A. Chudnovskii, and E. B. Shadrin, “Optical memory device based on vanadium dioxide film and a fast thermocooler,” in Second International Conference on Optical Information Processing (International Society for Optics and Photonics, 1996), pp. 270–273.
  38. P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23(5), 6878–6887 (2015).
    [Crossref] [PubMed]
  39. F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, J. Givernaud, A. Crunteanu, and P. Blondy, “RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices,” in Symposium V – Materials and Devices for Smart Systems III, MRS Online Proceedings Library (2008), 1129.
    [Crossref]
  40. A. I. Sidorov and E. N. Sosnov, “Spatial and temporal characteristics of TEA-CO2 laser action with intracavity vanadium dioxide mirrors,” In. 3611, 323–330 (1999).
  41. D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett. 35(23), 3988–3990 (2010).
    [Crossref] [PubMed]
  42. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
    [Crossref] [PubMed]
  43. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
    [Crossref] [PubMed]
  44. C. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley-Interscience, 2005).
  45. M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
    [Crossref]
  46. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
    [Crossref]
  47. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
    [Crossref] [PubMed]
  48. J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
    [Crossref] [PubMed]
  49. W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
    [Crossref] [PubMed]
  50. J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
    [Crossref] [PubMed]
  51. I. Webman, J. Jortner, and M. H. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials,” Phys. Rev. B 15(12), 5712–5723 (1977).
    [Crossref]
  52. P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
    [Crossref] [PubMed]
  53. M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
    [Crossref]
  54. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2004).
  55. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

2015 (7)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

J. Yang, H. Giessen, and P. Lalanne, “Simple Analytical Expression for the Peak-Frequency Shifts of Plasmonic Resonances for Sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

W. Zhang and O. J. F. Martin, “A Universal Law for Plasmon Resonance Shift in Biosensing,” ACS Photonics 2(1), 144–150 (2015).
[Crossref]

J. Scheuer and Y. Yifat, “Holography: Metasurfaces make it practical,” Nat. Nanotechnol. 10(4), 296–298 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23(5), 6878–6887 (2015).
[Crossref] [PubMed]

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

2014 (5)

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

L. Zou, M. Cryan, and M. Klemm, “Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects,” Opt. Express 22(20), 24142–24148 (2014).
[Crossref] [PubMed]

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization Switchable Diffraction Based on Subwavelength Plasmonic Nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref] [PubMed]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
[Crossref] [PubMed]

2013 (10)

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett. 38(2), 205–207 (2013).
[Crossref] [PubMed]

X. Ren, W. E. I. Sha, and W. C. H. Choy, “Tuning optical responses of metallic dipole nanoantenna using graphene,” Opt. Express 21(26), 31824–31829 (2013).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

F. Zhou, Y. Liu, and W. Cai, “Plasmonic holographic imaging with V-shaped nanoantenna array,” Opt. Express 21(4), 4348–4354 (2013).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, “Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas,” Opt. Express 21(4), 5198–5208 (2013).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

2011 (5)

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

2010 (5)

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett. 35(23), 3988–3990 (2010).
[Crossref] [PubMed]

A. Pors, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27(8), 1680 (2010).
[Crossref]

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

F. Huang and J. J. Baumberg, “Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

2009 (3)

W. A. Murray, B. Auguié, and W. L. Barnes, “Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment,” J. Phys. Chem. C 113(13), 5120–5125 (2009).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref] [PubMed]

2008 (2)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the Plasmon Resonances of Metallic Nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
[Crossref] [PubMed]

2007 (2)

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

2006 (1)

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

2004 (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

2003 (1)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

1999 (1)

A. I. Sidorov and E. N. Sosnov, “Spatial and temporal characteristics of TEA-CO2 laser action with intracavity vanadium dioxide mirrors,” In. 3611, 323–330 (1999).

1996 (1)

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[Crossref]

1977 (1)

I. Webman, J. Jortner, and M. H. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials,” Phys. Rev. B 15(12), 5712–5723 (1977).
[Crossref]

1975 (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

1969 (1)

C. N. Berglund and H. J. Guggenheim, “Electronic Properties of VO2 near the Semiconductor-Metal Transition,” Phys. Rev. 185(3), 1022–1033 (1969).
[Crossref]

Abb, M.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Abernathy, D. L.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Aizpurua, J.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the Plasmon Resonances of Metallic Nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Albrektsen, O.

Alù, A.

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Appavoo, K.

Atwater, H. A.

Auguié, B.

W. A. Murray, B. Auguié, and W. L. Barnes, “Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment,” J. Phys. Chem. C 113(13), 5120–5125 (2009).
[Crossref]

Aydin, K.

Bachelot, R.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bar-Lev, D.

Barnes, W. L.

W. A. Murray, B. Auguié, and W. L. Barnes, “Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment,” J. Phys. Chem. C 113(13), 5120–5125 (2009).
[Crossref]

Basov, D. N.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Baudrion, A.-L.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Baumberg, J. J.

F. Huang and J. J. Baumberg, “Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

Becker, M. F.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[Crossref]

Berglund, C. N.

C. N. Berglund and H. J. Guggenheim, “Electronic Properties of VO2 near the Semiconductor-Metal Transition,” Phys. Rev. 185(3), 1022–1033 (1969).
[Crossref]

Berthelot, J.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

Blanchard, R.

Blondy, P.

F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, J. Givernaud, A. Crunteanu, and P. Blondy, “RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices,” in Symposium V – Materials and Devices for Smart Systems III, MRS Online Proceedings Library (2008), 1129.
[Crossref]

Boag, A.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett. 38(2), 205–207 (2013).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

Boatner, L. A.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Bouhelier, A.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Bovington, J. T.

Bowers, J. E.

Boyd, E. M.

Bozhevolnyi, S. I.

Brehm, M.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Brun, A.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[Crossref]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the Plasmon Resonances of Metallic Nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Buckman, A. B.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[Crossref]

Budai, J. D.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Cai, W.

Cai, Z.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

Cao, J.

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

Capasso, F.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

Catherinot, A.

F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, J. Givernaud, A. Crunteanu, and P. Blondy, “RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices,” in Symposium V – Materials and Devices for Smart Systems III, MRS Online Proceedings Library (2008), 1129.
[Crossref]

Chae, B.-G.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Champeaux, C.

F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, J. Givernaud, A. Crunteanu, and P. Blondy, “RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices,” in Symposium V – Materials and Devices for Smart Systems III, MRS Online Proceedings Library (2008), 1129.
[Crossref]

Chen, W. T.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Chettiar, U.

Chiang, I.-D.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Chigrin, D. N.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Choy, W. C. H.

Chudnovskii, F. A.

V. L. Gal’Perin, I. A. Khakhaev, F. A. Chudnovskii, and E. B. Shadrin, “Optical memory device based on vanadium dioxide film and a fast thermocooler,” in Second International Conference on Optical Information Processing (International Society for Optics and Photonics, 1996), pp. 270–273.

Cohen, M. H.

I. Webman, J. Jortner, and M. H. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials,” Phys. Rev. B 15(12), 5712–5723 (1977).
[Crossref]

Coldren, L. A.

Crunteanu, A.

F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, J. Givernaud, A. Crunteanu, and P. Blondy, “RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices,” in Symposium V – Materials and Devices for Smart Systems III, MRS Online Proceedings Library (2008), 1129.
[Crossref]

Cryan, M.

Davids, P. S.

Davis, T. J.

de Leon, N. P.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Delaire, O.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Dereux, A.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

DeRose, C. T.

des-Francs, G. C.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

Dicken, M. J.

Doylend, J. K.

Dumas-Bouchiat, F.

F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, J. Givernaud, A. Crunteanu, and P. Blondy, “RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices,” in Symposium V – Materials and Devices for Smart Systems III, MRS Online Proceedings Library (2008), 1129.
[Crossref]

Earl, S. K.

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Eisler, H.-J.

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

Eitan, M.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett. 38(2), 205–207 (2013).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

Engheta, N.

Fan, W.

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

Farahani, J.

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

Finot, E.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Flückiger, P.

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

Friedler, I.

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

Gal’Perin, V. L.

V. L. Gal’Perin, I. A. Khakhaev, F. A. Chudnovskii, and E. B. Shadrin, “Optical memory device based on vanadium dioxide film and a fast thermocooler,” in Second International Conference on Optical Information Processing (International Society for Optics and Photonics, 1996), pp. 270–273.

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the Plasmon Resonances of Metallic Nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Gasser, P.

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

Genevet, P.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

Georges, P.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[Crossref]

Giessen, H.

J. Yang, H. Giessen, and P. Lalanne, “Simple Analytical Expression for the Peak-Frequency Shifts of Plasmonic Resonances for Sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

Givernaud, J.

F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, J. Givernaud, A. Crunteanu, and P. Blondy, “RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices,” in Symposium V – Materials and Devices for Smart Systems III, MRS Online Proceedings Library (2008), 1129.
[Crossref]

Gu, Q.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Guggenheim, H. J.

C. N. Berglund and H. J. Guggenheim, “Electronic Properties of VO2 near the Semiconductor-Metal Transition,” Phys. Rev. 185(3), 1022–1033 (1969).
[Crossref]

Guiton, B. S.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Haglund, R. F.

Hanein, Y.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett. 38(2), 205–207 (2013).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

Hao, Z.

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

He, Q.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Hecht, B.

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

Heck, M. J. R.

Ho, P.-C.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Holt, M. V.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

Homola, J.

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
[Crossref] [PubMed]

Hong, J.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Hsu, W.-L.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Huang, C.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Huang, F.

F. Huang and J. J. Baumberg, “Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

Huang, Y.-W.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Iluz, Z.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett. 38(2), 205–207 (2013).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

James, T. D.

Jokerst, N. M.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Jortner, J.

I. Webman, J. Jortner, and M. H. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials,” Phys. Rev. B 15(12), 5712–5723 (1977).
[Crossref]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kats, M. A.

Keilmann, F.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kekatpure, R. D.

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Khakhaev, I. A.

V. L. Gal’Perin, I. A. Khakhaev, F. A. Chudnovskii, and E. B. Shadrin, “Optical memory device based on vanadium dioxide film and a fast thermocooler,” in Second International Conference on Optical Information Processing (International Society for Optics and Photonics, 1996), pp. 270–273.

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Kim, B.-J.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, H.-T.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Klemm, M.

Kostcheev, S.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kvasnicka, P.

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
[Crossref] [PubMed]

Lalanne, P.

J. Yang, H. Giessen, and P. Lalanne, “Simple Analytical Expression for the Peak-Frequency Shifts of Plasmonic Resonances for Sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

Larouche, S.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Lei, D. Y.

Lépine, T.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[Crossref]

Leu, B. M.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Li, C. W.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Liao, C. Y.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lin, H. T.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Lin, J.

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Liu, A. Q.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Liu, W.-T.

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

Liu, Y.

Ma, J.

Maier, S. A.

Manley, M. E.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Maple, M. B.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Markov, P.

Martin, M. C.

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

Martin, O. J. F.

W. Zhang and O. J. F. Martin, “A Universal Law for Plasmon Resonance Shift in Biosensing,” ACS Photonics 2(1), 144–150 (2015).
[Crossref]

Marvel, R. E.

Maser, J. M.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

Maß, T. W. W.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

McCallum, J. C.

McQueeney, R. J.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Michel, A.-K. U.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Milne, W. I.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization Switchable Diffraction Based on Subwavelength Plasmonic Nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref] [PubMed]

Montelongo, Y.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization Switchable Diffraction Based on Subwavelength Plasmonic Nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref] [PubMed]

Mott, N. F.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Murray, W. A.

W. A. Murray, B. Auguié, and W. L. Barnes, “Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment,” J. Phys. Chem. C 113(13), 5120–5125 (2009).
[Crossref]

Muskens, O. L.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Ouyang, L.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Park, H.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Pavius, M.

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

Peters, J. D.

Plain, J.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Pohl, D.

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

Pors, A.

Pryce, I. M.

Qazilbash, M. M.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Ramanathan, S.

Ren, X.

Roberts, A.

Royer, P.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Said, A. H.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Salinga, M.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Schafgans, A. A.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

Scheuer, J.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

J. Scheuer and Y. Yifat, “Holography: Metasurfaces make it practical,” Nat. Nanotechnol. 10(4), 296–298 (2015).
[Crossref] [PubMed]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett. 38(2), 205–207 (2013).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

Schönauer, K.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Sha, W. E. I.

Shadrin, E. B.

V. L. Gal’Perin, I. A. Khakhaev, F. A. Chudnovskii, and E. B. Shadrin, “Optical memory device based on vanadium dioxide film and a fast thermocooler,” in Second International Conference on Optical Information Processing (International Society for Optics and Photonics, 1996), pp. 270–273.

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Shen, Y. R.

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

Shpyrko, O. G.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

Sidorov, A. I.

A. I. Sidorov and E. N. Sosnov, “Spatial and temporal characteristics of TEA-CO2 laser action with intracavity vanadium dioxide mirrors,” In. 3611, 323–330 (1999).

Smith, D. R.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Sonnefraud, Y.

Sosnov, E. N.

A. I. Sidorov and E. N. Sosnov, “Spatial and temporal characteristics of TEA-CO2 laser action with intracavity vanadium dioxide mirrors,” In. 3611, 323–330 (1999).

Specht, E. D.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Starbuck, A.

Sun, G.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Sun, S.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Sweatlock, L. A.

Taubner, T.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Tenorio-Pearl, J. O.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization Switchable Diffraction Based on Subwavelength Plasmonic Nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Tischler, J. Z.

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Tripathi, A.

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

Trotter, D. C.

Tsai, D. P.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Tsai, Y.-J.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Tyler, T.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Walavalkar, S.

Walser, R. M.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[Crossref]

Wang, C.-M.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, F.

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

Watts, M. R.

Webman, I.

I. Webman, J. Jortner, and M. H. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials,” Phys. Rev. B 15(12), 5712–5723 (1977).
[Crossref]

Weeber, J.-C.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Weiss, S. M.

Wendt, J. R.

Wiederrecht, G. P.

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Wilkinson, T. D.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization Switchable Diffraction Based on Subwavelength Plasmonic Nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref] [PubMed]

Willatzen, M.

Wu, J.

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Wuttig, M.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yaacobi, A.

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Yang, J.

J. Yang, H. Giessen, and P. Lalanne, “Simple Analytical Expression for the Peak-Frequency Shifts of Plasmonic Resonances for Sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

Yang, K.-Y.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yang, Z.

Yifat, Y.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

J. Scheuer and Y. Yifat, “Holography: Metasurfaces make it practical,” Nat. Nanotechnol. 10(4), 296–298 (2015).
[Crossref] [PubMed]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett. 38(2), 205–207 (2013).
[Crossref] [PubMed]

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, W.

W. Zhang and O. J. F. Martin, “A Universal Law for Plasmon Resonance Shift in Biosensing,” ACS Photonics 2(1), 144–150 (2015).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhou, F.

Zhou, L.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Zou, L.

Zylbersztejn, A.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

ACS Photonics (2)

W. Zhang and O. J. F. Martin, “A Universal Law for Plasmon Resonance Shift in Biosensing,” ACS Photonics 2(1), 144–150 (2015).
[Crossref]

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

Appl. Phys. Lett. (2)

C. Huang, A. Bouhelier, J. Berthelot, G. C. des-Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “External control of the scattering properties of a single optical nanoantenna,” Appl. Phys. Lett. 96(14), 143116 (2010).
[Crossref]

Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett. 100(11), 111113 (2012).
[Crossref]

Biointerphases (1)

P. Kvasnička and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations,” Biointerphases 3(3), FD4–FD11 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

In. (1)

A. I. Sidorov and E. N. Sosnov, “Spatial and temporal characteristics of TEA-CO2 laser action with intracavity vanadium dioxide mirrors,” In. 3611, 323–330 (1999).

J. Appl. Phys. (1)

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation dynamics of the semiconductor‐metal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

W. A. Murray, B. Auguié, and W. L. Barnes, “Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment,” J. Phys. Chem. C 113(13), 5120–5125 (2009).
[Crossref]

Nano Lett. (12)

F. Huang and J. J. Baumberg, “Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers,” Nano Lett. 10(5), 1787–1792 (2010).
[Crossref] [PubMed]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

J. Yang, H. Giessen, and P. Lalanne, “Simple Analytical Expression for the Peak-Frequency Shifts of Plasmonic Resonances for Sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the Plasmon Resonances of Metallic Nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays,” Nano Lett. 14(5), 2485–2490 (2014).
[Crossref] [PubMed]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

J. Lin, P. Genevet, M. A. Kats, N. Antoniou, and F. Capasso, “Nanostructured Holograms for Broadband Manipulation of Vector Beams,” Nano Lett. 13(9), 4269–4274 (2013).
[Crossref] [PubMed]

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization Switchable Diffraction Based on Subwavelength Plasmonic Nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref] [PubMed]

W.-T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, and F. Wang, “Intrinsic Optical Properties of Vanadium Dioxide near the Insulator-Metal Transition,” Nano Lett. 11(2), 466–470 (2011).
[Crossref] [PubMed]

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline VO2 Nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Nanotechnology (1)

J. Farahani, H.-J. Eisler, D. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007).
[Crossref]

Nat. Commun. (1)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Nat. Mater. (1)

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. Scheuer and Y. Yifat, “Holography: Metasurfaces make it practical,” Nat. Nanotechnol. 10(4), 296–298 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Nature (2)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. McQueeney, and O. Delaire, “Metallization of vanadium dioxide driven by large phonon entropy,” Nature 515(7528), 535–539 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Opt. Express (8)

X. Ren, W. E. I. Sha, and W. C. H. Choy, “Tuning optical responses of metallic dipole nanoantenna using graphene,” Opt. Express 21(26), 31824–31829 (2013).
[Crossref] [PubMed]

C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, “Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas,” Opt. Express 21(4), 5198–5208 (2013).
[Crossref] [PubMed]

L. Zou, M. Cryan, and M. Klemm, “Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects,” Opt. Express 22(20), 24142–24148 (2014).
[Crossref] [PubMed]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

F. Zhou, Y. Liu, and W. Cai, “Plasmonic holographic imaging with V-shaped nanoantenna array,” Opt. Express 21(4), 4348–4354 (2013).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref] [PubMed]

P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23(5), 6878–6887 (2015).
[Crossref] [PubMed]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. (1)

C. N. Berglund and H. J. Guggenheim, “Electronic Properties of VO2 near the Semiconductor-Metal Transition,” Phys. Rev. 185(3), 1022–1033 (1969).
[Crossref]

Phys. Rev. B (3)

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, “Nanoscale imaging of the electronic and structural transitions in vanadium dioxide,” Phys. Rev. B 83(16), 165108 (2011).
[Crossref]

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11(11), 4383–4395 (1975).
[Crossref]

I. Webman, J. Jortner, and M. H. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials,” Phys. Rev. B 15(12), 5712–5723 (1977).
[Crossref]

Phys. Rev. Lett. (2)

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

Science (1)

M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Other (5)

C. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley-Interscience, 2005).

F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, J. Givernaud, A. Crunteanu, and P. Blondy, “RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices,” in Symposium V – Materials and Devices for Smart Systems III, MRS Online Proceedings Library (2008), 1129.
[Crossref]

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2004).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

V. L. Gal’Perin, I. A. Khakhaev, F. A. Chudnovskii, and E. B. Shadrin, “Optical memory device based on vanadium dioxide film and a fast thermocooler,” in Second International Conference on Optical Information Processing (International Society for Optics and Photonics, 1996), pp. 270–273.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) Schematic of the device; thermal gradient is to be applied along the direction of the green axis b) Layer structure.
Fig. 2
Fig. 2 Refractive index data for VO2 [35].
Fig. 3
Fig. 3 Metallic fraction of VO2 vs temperature for an 80nm film over alumina (adapted from [45]) with a linear regression analysis overlay.
Fig. 4
Fig. 4 Simulated refractive index for VO2 undergoing a phase transition, with varying hot/cold phase content ratio; Percentages are for the cold fraction.
Fig. 5
Fig. 5 The amplitude (a) and phase (b) response of a an array of identical slot nano-antenna elements for varying metallic phase fraction of VO2 thin film.
Fig. 6
Fig. 6 The amplitude (a) and phase (b) of the local field along the center of the nano-antennas array for a maximal thermal gradient along the array axis.
Fig. 7
Fig. 7 Far field plots of | E | 2 of the beam scattered from the array, with thermal gradient across the array of (a) 0%, (b) 33% and (c) 100% of maximum.
Fig. 8
Fig. 8 A φ = 0 angular plot of the far field response of the proposed device for varying difference in metallic fraction content of VO2 between the two ends of the array (ΔM). Inset: the dependence of the amplitude of the reflected beam on ΔM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D a r r ( θ , φ ) = F { i A i exp ( j ϕ i ) δ ( r r i ) } × D ( θ , φ )
θ = arc sin ( Δ ϕ 2 π λ d )
P m i x = ϕ P 1 + ( 1 ϕ ) P 2
ε m i x 1 ε m i x + 2 = ϕ ε 1 1 ε 1 + 2 + ( 1 ϕ ) ε 2 1 ε 2 + 2

Metrics