M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]
[PubMed]
F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]
T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref]
[PubMed]
K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]
A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
[Crossref]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref]
[PubMed]
A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]
A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref]
[PubMed]
C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]
H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref]
[PubMed]
R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref]
[PubMed]
M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]
J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]
[PubMed]
W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref]
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).
T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref]
[PubMed]
D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]
F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref]
[PubMed]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
[PubMed]
A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).
M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]
M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
[Crossref]
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref]
[PubMed]
V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]
E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]
A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref]
[PubMed]
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]
R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref]
[PubMed]
H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref]
[PubMed]
P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref]
[PubMed]
A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref]
[PubMed]
V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]
[PubMed]
P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref]
[PubMed]
M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]
[PubMed]
H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref]
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]
T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref]
[PubMed]
E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]
C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]
M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]
D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]
D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]
V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]
R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref]
[PubMed]
T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref]
[PubMed]
A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
[Crossref]
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
[PubMed]
M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]
D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).
M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref]
[PubMed]
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]
S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref]
[PubMed]
A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref]
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
[PubMed]
K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]
F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]
K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]
A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref]
[PubMed]
A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref]
[PubMed]
A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).
P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref]
[PubMed]
A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]
W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref]
[PubMed]
J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]
[PubMed]
A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref]
[PubMed]
J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]
[PubMed]
M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref]
[PubMed]
M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]
D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]
[PubMed]
V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]
F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref]
[PubMed]
M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]
F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]
K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]
P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref]
[PubMed]
T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref]
[PubMed]
R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref]
[PubMed]
A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]
M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).
M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]
[PubMed]
A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref]
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
[PubMed]
A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).
M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
[Crossref]
A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref]
[PubMed]
V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]
M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
[Crossref]
S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref]
[PubMed]
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref]
[PubMed]
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
[PubMed]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref]
[PubMed]
D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]
E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref]
[PubMed]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref]
[PubMed]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]
[PubMed]
T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]
[PubMed]
A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
[Crossref]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]
[PubMed]
A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref]
[PubMed]
F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]
S. Kanagaprabha, A. T. Asvinimeenaatci, G. Sudhapriyanga, A. Jemmy Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First principles study of stability and electronic structure of TMH and TMH2 (TM = Y, Zr, Nb),” Acta Phys. Pol. A 123, 126–131 (2013).
A. Kumar and D. P. Ojha, “Electrical transport and electronic structure calculation of Al-Ga binary alloys,” Acta Phys. Pol. A 119, 408–415 (2011).
P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755, 4729 (2012).
[Crossref]
[PubMed]
M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]
T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]
E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE J. Quantum Electron. 16(3), 373–381 (1980).
[Crossref]
M. Jafari, H. Jamnezhad, and L. Nazarzadeh, “Electronic properties of titanium using density functional theory,” Iranian J. Sci. and Tech. 36, 511–515 (2012).
A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]
A. O. Govorov and H. Zhang, “Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons,” J. Phys. Chem. C 119(11), 6181–6194 (2015).
[Crossref]
K. J. Tielrooij, M. Massicotte, L. Piatkowski, A. Woessner, Q. Ma, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Hot-carrier photocurrent effects at graphene-metal interfaces,” J. Phys.- Condensed Mat. 27, 16 (2015).
K. Krupski, M. Moors, P. Jozwik, T. Kobiela, and A. Krupski, “Structure determination of Au on Pt(111) surface: LEED, STM and DFT Study,” Materials (Basel) 8(6), 2935–2952 (2015).
[Crossref]
M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nanocomposite metamaterial absorber,” Materials (Basel) 7(2), 1221–1248 (2014).
[Crossref]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]
W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref]
[PubMed]
F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref]
[PubMed]
H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref]
[PubMed]
T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref]
[PubMed]
A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]
[PubMed]
R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref]
[PubMed]
M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]
[PubMed]
D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, and X. Xu, “Ultrafast hot-carrier-dominated photocurrent in graphene,” Nat. Nanotechnol. 7(2), 114–118 (2012).
[Crossref]
[PubMed]
C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]
K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9(4), 248–252 (2013).
[Crossref]
F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Burkle, J. C. Cuevas, and G. Schon, “Cluster-based density-functional approach to quantum transport through molecular and atomic contacts,” New J. Phys. 10(12), 125019 (2008).
[Crossref]
D. R. Mason, C. P. Race, M. H. F. Foo, A. P. Horsfield, W. M. C. Foulkes, and A. P. Sutton, “Resonant charging and stopping power of slow channelling atoms in a crystalline metal,” New J. Phys. 14(7), 073009 (2012).
[Crossref]
V. Fournee, I. Mazin, D. A. Papaconstantopoulos, and E. Belin-Ferre, “Electronic structure calculations of Al-Cu alloys: comparison with experimental results on Hume-Rothery phases,” Philos. Mag. B 79(2), 205–221 (1999).
[Crossref]
A. Kumar, D. Banyai, P. K. Ahluwalia, R. Pandey, and S. P. Karna, “Electronic stability and electron transport properties of atomic wires anchored on the MoS2 monolayer,” Phys. Chem. Chem. Phys. 16(37), 20157–20163 (2014).
[Crossref]
[PubMed]
M. A. Ortigoza and T. S. Rahman, “First principles calculations of the electronic and geometric structure of Ag27Cu7 Nanoalloy,” Phys. Rev. B 77(19), 195404 (2008).
[Crossref]
H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref]
[PubMed]
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref]
[PubMed]
J. Spitaler and L. Pardini, “Electronic-Structure Calculations,” http://exciting-code.org/beryllium-electronic-structure-calculations .
L. H. Bennett, Electronic Density of States: Based on Invited and Contributed Papers and Discussion (U.S. National Bureau of Standards, 1971).
E. Faizabadi, “Single wall carbon nanotubes in the presence of vacancies and related energy gaps,” in Electronic Properties of Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2011).
K. Nakada and A. Ishii, “DFT Calculation for Adatom Adsorption on Graphene,” in Graphene Simulation, J. R. Gong, ed. (Intech, 2011).