Abstract

Alternative plasmonic materials have attracted considerable attention due to their advantages compared to conventional metals, including compatibility with Si processing, tunability of optical properties, and reduced losses. In this work, we demonstrate that post-deposition annealing of materials fabricated by magnetron sputtering allows large tuning of the structural and the optical dispersion properties of Indium Tin Oxide (ITO), Al-doped ZnO (AZO) and Titanium Nitride (TiN) nano-layers. By measuring their optical bandgaps, we show that thermal annealing treatments can dramatically modulate the carrier concentration in these materials, thus providing tunability of the optical losses and enabling the engineering of Epsilon-Near-Zero (ENZ) regime. Besides, we perform X-ray diffraction (XRD) measurements to show that thermal annealing can also effectively tune the materials grain sizes. Eventually, the effect of different annealing gases on the free carrier concentration has also been investigated. The wide tunability and control of the optical and structural properties that we demonstrated in this work is important to engineer resonant optical responses across a wide frequency spectrum for device applications to plasmonics, metamaterials and transformation-optics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic behaviors of metallic AZO thin film and AZO nanodisk array

Jia-Yu Lin, Kun-Da Zhong, and Po-Tsung Lee
Opt. Express 24(5) 5125-5135 (2016)

Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko
Opt. Mater. Express 7(5) 1606-1627 (2017)

Temperature stability of thin film refractory plasmonic materials

Matthew P. Wells, Ryan Bower, Rebecca Kilmurray, Bin Zou, Andrei P. Mihai, Gomathi Gobalakrichenane, Neil McN. Alford, Rupert F. M. Oulton, Lesley F. Cohen, Stefan A. Maier, Anatoly V. Zayats, and Peter K. Petrov
Opt. Express 26(12) 15726-15744 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics: The case for plasmonics,” Science 328(5977), 440–441 (2010).
    [Crossref] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  4. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  5. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi 4(10), 295–297 (2010).
    [Crossref]
  6. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
    [Crossref]
  7. H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
    [Crossref]
  8. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
    [Crossref]
  9. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  10. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  11. M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
    [Crossref]
  12. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  13. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
    [Crossref] [PubMed]
  14. Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
    [Crossref]
  15. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
    [Crossref] [PubMed]
  16. A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics (under review.).
    [Crossref]
  17. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
    [Crossref]
  18. J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1–7 (2013).
    [Crossref]
  19. J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
    [Crossref] [PubMed]
  20. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
    [Crossref]
  21. M. T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating,” Biomaterials 21(9), 907–913 (2000).
    [Crossref] [PubMed]
  22. C. Y. Ting, “TiN formed by evaporation as a diffusion barrier between Al and Si,” J. Vac. Sci. Technol. 21(1), 14 (1982).
    [Crossref]
  23. H. Köstlin, R. Jost, and W. Lems, “Optical and electrical properties of doped In2O3 films,” Phys. Status Solidi 29(1), 87–93 (1975).
    [Crossref]
  24. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445(2), 263–267 (2003).
    [Crossref]
  25. J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113(6), 063704 (2013).
    [Crossref]
  26. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  27. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 72, 1–9 (2005).
  28. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–16 (2007).
  29. A. Alù and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
    [Crossref] [PubMed]
  30. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  31. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
    [Crossref]
  32. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
    [Crossref]
  33. D.-H. Kim, M.-R. Park, H.-J. Lee, and G.-H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
    [Crossref]
  34. A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
    [Crossref]
  35. T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi 1, 31–33 (2007).
  36. E. D. Palik, Handbook of Optical Constants, Vol. 2 (1991).
  37. J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
    [Crossref]
  38. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
    [Crossref]
  39. E. Burstein, “Anomalous optical absorption limit in InSb [4],” Phys. Rev. 93(3), 632–633 (1954).
    [Crossref]
  40. L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
    [Crossref]
  41. Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci. 241, 303–308 (2005).
    [Crossref]
  42. L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2005).
    [Crossref]
  43. Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci. 241(3-4), 303–308 (2005).
    [Crossref]
  44. S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films 435(1-2), 78–82 (2003).
    [Crossref]
  45. C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
    [Crossref]
  46. A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).
  47. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
    [Crossref]
  48. R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).
  49. N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
    [Crossref]
  50. S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
    [Crossref]
  51. O. Warschkow, L. Miljacic, D. E. Ellis, G. González, and T. O. Mason, “Interstitial oxygen in tin-doped indium oxide transparent conductors,” J. Am. Ceram. Soc. 89(2), 616–619 (2006).
    [Crossref]
  52. J. Rosen and O. Warschkow, “Electronic structure of amorphous indium oxide transparent conductors,” Phys. Rev. B – Condens. Matter Mater. Phys. 80(11), 1–10 (2009).
    [Crossref]
  53. H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
    [Crossref]
  54. H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
    [Crossref]
  55. F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
    [Crossref]

2015 (5)

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

2014 (2)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

2013 (3)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1–7 (2013).
[Crossref]

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113(6), 063704 (2013).
[Crossref]

2012 (4)

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).

2011 (3)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
[Crossref]

2010 (5)

M. L. Brongersma and V. M. Shalaev, “Applied physics: The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi 4(10), 295–297 (2010).
[Crossref]

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

2009 (2)

J. Rosen and O. Warschkow, “Electronic structure of amorphous indium oxide transparent conductors,” Phys. Rev. B – Condens. Matter Mater. Phys. 80(11), 1–10 (2009).
[Crossref]

A. Alù and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

2008 (1)

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
[Crossref]

2007 (4)

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi 1, 31–33 (2007).

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–16 (2007).

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

2006 (2)

O. Warschkow, L. Miljacic, D. E. Ellis, G. González, and T. O. Mason, “Interstitial oxygen in tin-doped indium oxide transparent conductors,” J. Am. Ceram. Soc. 89(2), 616–619 (2006).
[Crossref]

D.-H. Kim, M.-R. Park, H.-J. Lee, and G.-H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

2005 (4)

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci. 241, 303–308 (2005).
[Crossref]

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2005).
[Crossref]

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci. 241(3-4), 303–308 (2005).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 72, 1–9 (2005).

2004 (2)

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
[Crossref]

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
[Crossref]

2003 (4)

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445(2), 263–267 (2003).
[Crossref]

S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films 435(1-2), 78–82 (2003).
[Crossref]

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

2001 (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

2000 (3)

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

M. T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating,” Biomaterials 21(9), 907–913 (2000).
[Crossref] [PubMed]

1999 (1)

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

1998 (1)

L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
[Crossref]

1982 (1)

C. Y. Ting, “TiN formed by evaporation as a diffusion barrier between Al and Si,” J. Vac. Sci. Technol. 21(1), 14 (1982).
[Crossref]

1975 (1)

H. Köstlin, R. Jost, and W. Lems, “Optical and electrical properties of doped In2O3 films,” Phys. Status Solidi 29(1), 87–93 (1975).
[Crossref]

1972 (1)

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
[Crossref]

1954 (1)

E. Burstein, “Anomalous optical absorption limit in InSb [4],” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

Agashe, C.

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
[Crossref]

Agura, H.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445(2), 263–267 (2003).
[Crossref]

Akimov, A. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Alù, A.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

A. Alù and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–16 (2007).

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 72, 1–9 (2005).

Aoki, T.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
[Crossref]

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445(2), 263–267 (2003).
[Crossref]

Appleby, D. J. R.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Arac, E.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bavadi, R.

R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).

Boltasseva, A.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1–7 (2013).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi 4(10), 295–297 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Boo, J. H.

S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films 435(1-2), 78–82 (2003).
[Crossref]

Brewer, S. H.

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics: The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Bunjongpru, W.

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

Burstein, E.

E. Burstein, “Anomalous optical absorption limit in InSb [4],” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Capretti, A.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics (under review.).
[Crossref]

Chawla, J. S.

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113(6), 063704 (2013).
[Crossref]

Chen, P.-Y.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Chrisey, D. B.

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Dal Negro, L.

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

Dogheche, E.

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2005).
[Crossref]

dos Santos, M.

L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
[Crossref]

Ellis, D. E.

O. Warschkow, L. Miljacic, D. E. Ellis, G. González, and T. O. Mason, “Interstitial oxygen in tin-doped indium oxide transparent conductors,” J. Am. Ceram. Soc. 89(2), 616–619 (2006).
[Crossref]

Emani, N. K.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1–7 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Engheta, N.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

A. Alù and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–16 (2007).

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 72, 1–9 (2005).

A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics (under review.).
[Crossref]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Fang, Z. B.

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci. 241, 303–308 (2005).
[Crossref]

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci. 241(3-4), 303–308 (2005).
[Crossref]

Ferrera, M.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Franzen, S.

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
[Crossref]

Fujii, M.

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

Fung, M. K.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Gai, R.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Gall, D.

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113(6), 063704 (2013).
[Crossref]

Ganti, S.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Gilmore, C. M.

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

González, G.

O. Warschkow, L. Miljacic, D. E. Ellis, G. González, and T. O. Mason, “Interstitial oxygen in tin-doped indium oxide transparent conductors,” J. Am. Ceram. Soc. 89(2), 616–619 (2006).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1–7 (2013).
[Crossref]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Horwitz, J. S.

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Hruanun, C.

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

Huang, Z.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Hüpkes, J.

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
[Crossref]

Inampudi, S.

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

Irudayaraj, J.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Irudayaraj, J. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jeong, S. H.

S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films 435(1-2), 78–82 (2003).
[Crossref]

Jiang, X.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Jost, R.

H. Köstlin, R. Jost, and W. Lems, “Optical and electrical properties of doped In2O3 films,” Phys. Status Solidi 29(1), 87–93 (1975).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kafafi, Z. H.

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Kerkache, L.

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2005).
[Crossref]

Kildishev, A. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Kim, D.-H.

D.-H. Kim, M.-R. Park, H.-J. Lee, and G.-H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Kim, H.

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Kim, J.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1–7 (2013).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
[Crossref]

King, P. J.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Klamkin, J.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

Klimov, V. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Kluth, O.

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
[Crossref]

Köstlin, H.

H. Köstlin, R. Jost, and W. Lems, “Optical and electrical properties of doped In2O3 films,” Phys. Status Solidi 29(1), 87–93 (1975).
[Crossref]

Kuboi, T.

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi 1, 31–33 (2007).

Kushto, G. P.

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

Kwa, K. S. K.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Lagutchev, A.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Lai, F.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Layadi, A.

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2005).
[Crossref]

Lee, G.-H.

D.-H. Kim, M.-R. Park, H.-J. Lee, and G.-H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Lee, H.-J.

D.-H. Kim, M.-R. Park, H.-J. Lee, and G.-H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Lee, J. W.

S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films 435(1-2), 78–82 (2003).
[Crossref]

Lee, S. B.

S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films 435(1-2), 78–82 (2003).
[Crossref]

Lee, S. T.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Lems, W.

H. Köstlin, R. Jost, and W. Lems, “Optical and electrical properties of doped In2O3 films,” Phys. Status Solidi 29(1), 87–93 (1975).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Lin, L.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Lin, Y.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Liu, J.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, X. Q.

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci. 241(3-4), 303–308 (2005).
[Crossref]

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci. 241, 303–308 (2005).
[Crossref]

Logothetidis, S.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

Mason, T. O.

O. Warschkow, L. Miljacic, D. E. Ellis, G. González, and T. O. Mason, “Interstitial oxygen in tin-doped indium oxide transparent conductors,” J. Am. Ceram. Soc. 89(2), 616–619 (2006).
[Crossref]

Matsushita, T.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
[Crossref]

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445(2), 263–267 (2003).
[Crossref]

Mattoussi, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Meng, L.

L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
[Crossref]

Menth, A.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
[Crossref]

Michihata, R.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
[Crossref]

Miljacic, L.

O. Warschkow, L. Miljacic, D. E. Ellis, G. González, and T. O. Mason, “Interstitial oxygen in tin-doped indium oxide transparent conductors,” J. Am. Ceram. Soc. 89(2), 616–619 (2006).
[Crossref]

Minami, T.

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi 1, 31–33 (2007).

Miyata, T.

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi 1, 31–33 (2007).

Murata, H.

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1–7 (2013).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi 4(10), 295–297 (2010).
[Crossref]

Nakamura, M.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
[Crossref]

Negro, L. D.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics (under review.).
[Crossref]

Ni, X.

Nukaew, J.

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

O’Neill, A.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Ohtani, Y.

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi 1, 31–33 (2007).

Okuda, M.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
[Crossref]

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445(2), 263–267 (2003).
[Crossref]

Pankiew, A.

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

Park, M.-R.

D.-H. Kim, M.-R. Park, H.-J. Lee, and G.-H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Patsalas, P.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

Pietrabissa, R.

M. T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating,” Biomaterials 21(9), 907–913 (2000).
[Crossref] [PubMed]

Piqué, A.

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Ponon, N. K.

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

Porntheeraphat, S.

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

Poyai, A.

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

Raimondi, M. T.

M. T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating,” Biomaterials 21(9), 907–913 (2000).
[Crossref] [PubMed]

Rech, B.

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
[Crossref]

Rémiens, D.

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2005).
[Crossref]

Rosen, J.

J. Rosen and O. Warschkow, “Electronic structure of amorphous indium oxide transparent conductors,” Phys. Rev. B – Condens. Matter Mater. Phys. 80(11), 1–10 (2009).
[Crossref]

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Schlaf, R.

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

Schroeder, J. L.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shalaev, V. M.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

M. L. Brongersma and V. M. Shalaev, “Applied physics: The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Shalaginov, M. Y.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–16 (2007).

Smolyaninov, A. N.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Somwang, N.

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

Sopitpan, S.

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

Stach, E. A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Sugimoto, H.

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

Suzuki, A.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
[Crossref]

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445(2), 263–267 (2003).
[Crossref]

Tan, Y. S.

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci. 241, 303–308 (2005).
[Crossref]

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci. 241(3-4), 303–308 (2005).
[Crossref]

Tauc, J.

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Ting, C. Y.

C. Y. Ting, “TiN formed by evaporation as a diffusion barrier between Al and Si,” J. Vac. Sci. Technol. 21(1), 14 (1982).
[Crossref]

Valedbagi, S.

R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Vorobyov, V. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Wager, J. F.

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

Wang, Y.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics (under review.).
[Crossref]

Wang, Y. Y.

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci. 241(3-4), 303–308 (2005).
[Crossref]

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci. 241, 303–308 (2005).
[Crossref]

Warschkow, O.

J. Rosen and O. Warschkow, “Electronic structure of amorphous indium oxide transparent conductors,” Phys. Rev. B – Condens. Matter Mater. Phys. 80(11), 1–10 (2009).
[Crossref]

O. Warschkow, L. Miljacic, D. E. Ellis, G. González, and T. O. Mason, “Interstitial oxygen in tin-doped indium oxide transparent conductors,” J. Am. Ceram. Soc. 89(2), 616–619 (2006).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wong, F. L.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Wuttig, M.

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
[Crossref]

Yan, Z. J.

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci. 241(3-4), 303–308 (2005).
[Crossref]

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci. 241, 303–308 (2005).
[Crossref]

Zastrow, U.

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
[Crossref]

Zhang, X. Y.

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113(6), 063704 (2013).
[Crossref]

Zhao, H.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

Adv. Mater. (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett. 76(3), 259–261 (2000).
[Crossref]

Appl. Surf. Sci. (3)

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of different post-treatments on the structure and optical properties of zinc oxide thin films,” Appl. Surf. Sci. 241, 303–308 (2005).
[Crossref]

Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, and Y. Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films,” Appl. Surf. Sci. 241(3-4), 303–308 (2005).
[Crossref]

D.-H. Kim, M.-R. Park, H.-J. Lee, and G.-H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Biomaterials (1)

M. T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating,” Biomaterials 21(9), 907–913 (2000).
[Crossref] [PubMed]

Chem. Phys. (1)

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1–7 (2013).
[Crossref]

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

O. Warschkow, L. Miljacic, D. E. Ellis, G. González, and T. O. Mason, “Interstitial oxygen in tin-doped indium oxide transparent conductors,” J. Am. Ceram. Soc. 89(2), 616–619 (2006).
[Crossref]

J. Appl. Phys. (4)

C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films,” J. Appl. Phys. 95(4), 1911–1917 (2004).
[Crossref]

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113(6), 063704 (2013).
[Crossref]

J. Microsc. Soc. Thail. (1)

A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, and A. Poyai, “Study of TiN Films Morphology Deposited by DC Magnetron Sputtering in Different N2: Ar Mixtures,”J. Microsc. Soc. Thail. 24, 103–107 (2010).

J. Non-Cryst. Solids (1)

J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8–10, 569–585 (1972).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2005).
[Crossref]

J. Vac. Sci. Technol. (1)

C. Y. Ting, “TiN formed by evaporation as a diffusion barrier between Al and Si,” J. Vac. Sci. Technol. 21(1), 14 (1982).
[Crossref]

Laser Photonics Rev. (2)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Mater. Phys. Mech. (1)

R. Bavadi and S. Valedbagi, “Physical properties of titanium nitride thin film prepared by DC magnetron sputtering,” Mater. Phys. Mech. 15, 167–172 (2012).

Metamaterials (1)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. (1)

E. Burstein, “Anomalous optical absorption limit in InSb [4],” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

Phys. Rev. B (1)

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

J. Rosen and O. Warschkow, “Electronic structure of amorphous indium oxide transparent conductors,” Phys. Rev. B – Condens. Matter Mater. Phys. 80(11), 1–10 (2009).
[Crossref]

Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 72, 1–9 (2005).

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–16 (2007).

Phys. Rev. Lett. (2)

A. Alù and N. Engheta, “Cloaking a Sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Phys. Status Solidi (3)

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi 1, 31–33 (2007).

H. Köstlin, R. Jost, and W. Lems, “Optical and electrical properties of doped In2O3 films,” Phys. Status Solidi 29(1), 87–93 (1975).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi 4(10), 295–297 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Science (3)

M. L. Brongersma and V. M. Shalaev, “Applied physics: The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

Thin Solid Films (7)

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445(2), 263–267 (2003).
[Crossref]

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films 517(4), 1478–1481 (2008).
[Crossref]

H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377–378, 798–802 (2000).
[Crossref]

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

N. K. Ponon, D. J. R. Appleby, E. Arac, P. J. King, S. Ganti, K. S. K. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31–37 (2015).
[Crossref]

L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
[Crossref]

S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films 435(1-2), 78–82 (2003).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants, Vol. 2 (1991).

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range,” ACS Photonics (under review.).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Real (a) and imaginary (b) part of permittivity of ITO samples on Si substrate annealed at different temperatures: As Deposited (black), 350 C (red), 550 C (green), 750 C (blue). The annealing is performed in Ar atmosphere for 30 min for all samples. Continuous lines are for samples with thickness 37 nm, dashed lines are for samples with thickness 300 nm.
Fig. 2
Fig. 2 Real (a) and imaginary (b) part of permittivity of AZO samples on Si substrate annealed at different temperatures: As Deposited (black), 100 C (red), 200 C (green), 225 C (blue), 250 C (cyan), 275 C (magenta), 300 C (dark yellow), 400 C (orange). The annealing is performed in N2 atmosphere for 60 min for all samples. Continuous lines are for samples with thickness 37 nm, dashed lines are for samples with thickness 300 nm.
Fig. 3
Fig. 3 λENZ (black curves on left axis) and ε2 (blue curves on right axis) as a function of the annealing temperature. Solid triangular lines are for ITO samples with thickness 37 nm, and solid circle lines are for ITO samples with thickness 300 nm.
Fig. 4
Fig. 4 λENZ (black curves on left axis) and ε2 (blue curves on right axis) as a function of the annealing temperature. Solid triangular lines are for AZO samples with thickness 37 nm, and solid circle lines are for AZO samples with thickness 300 nm.
Fig. 5
Fig. 5 Real (a) and imaginary (b) part of permittivity of TiN samples with thickness 40 nm on Si substrate annealed at different temperatures: As Deposited (black), 200 C (red), 300 C (green), 400 C (blue), 500 C (cyan), 600 C (magenta), 700 C (dark yellow), 800 C (navy), 900 C (purple). The annealing is performed in vacuum for 60 min for all samples.
Fig. 6
Fig. 6 Real (a) and imaginary (b) part of permittivity of TiN samples with thickness 300 nm on Si substrate annealed at different temperatures: As Deposited (black), 200 C (red), 300 C (green), 400 C (blue), 500 C (cyan), 600 C (magenta), 700 C (dark yellow), 800 C (navy), 900 C (purple). The annealing is performed in vacuum for 60 min for all samples.
Fig. 7
Fig. 7 λPS (black curves on left axis) and ε2 (blue curves on right axis) as a function of the annealing temperature. Solid triangular lines are for TiN samples with thickness 40 nm, and solid circle lines are for TiN samples with thickness 300 nm.
Fig. 8
Fig. 8 Optical image of TiN samples with thickness 40 nm on Si substrate annealed at different temperatures from room temperature to 900 C. For samples annealed above 700 C, Au-like metallic luster starts to present.
Fig. 9
Fig. 9 (a) Tauc plot for a set of ITO samples, where the linear fit (dashed lines) extrapolates the optical bandgap Eg = 3.94 eV (red, λENZ = 1160 nm), Eg = 3.90 eV (blue, λENZ = 1250 nm), Eg = 3.81 eV (green, λENZ = 1360 nm), Eg = 3.68 eV (cyan, λENZ = 1810 nm), Eg = 3.63 eV (magenta, λENZ = 2000 nm). Inset: Burstein-Moss shift of the bandgap Eg as a function of the carrier concentration N2/3. (b) λENZ (circles on left axis) and plasma frequency (triangles on right axis in energy units) as a function of the bandgap Eg.
Fig. 10
Fig. 10 (a) Tauc plot for a set of AZO samples, where the linear fit (dashed lines) extrapolates the optical bandgap Eg = 3.93 eV (red, λENZ = 1441 nm), Eg = 3.82 eV (blue, λENZ = 1548 nm), Eg = 3.7 eV (green, λENZ = 1698 nm), Eg = 3.68 eV (cyan, λENZ = 1749 nm). Inset: Burstein-Moss shift of the bandgap Eg as a function of the carrier concentration N2/3. (b) λENZ (circles on left axis) and plasma frequency (triangles on right axis in energy units) as a function of the bandgap Eg.
Fig. 11
Fig. 11 (a) Tauc plot for a set of TiN samples, where the linear fit (dashed lines) extrapolates the optical bandgap Eg = 3.83 eV (black, λPS = 509 nm), Eg = 3.78 eV (red, λPS = 546 nm), Eg = 3.82 eV (green, λPS = 576 nm), Eg = 3.72 eV (blue, λPS = 602 nm), Eg = 3.65 eV (cyan, λPS = 612 nm), Eg = 3.64 eV (magenta, λPS = 624 nm), Eg = 3.62 eV (dark yellow, λPS = 638 nm), Eg = 3.56 eV (navy, λPS = 637 nm), Eg = 3.53 eV (purple, λPS = 647 nm). (b) λPS (circles on left axis) and optical bandgap (triangles on right axis in energy units) as a function of the annealing temperature.
Fig. 12
Fig. 12 (a) X-ray diffraction pattern for a set of ITO samples with thickness 300 nm on Si substrate, with λENZ = 1826 nm (black, As Deposited), 1609 nm (red, 350 C 30 min in Ar), 1476 nm (green, 550 C 30 min in Ar), 1283 nm (blue, 750 C 30 min in Ar). (b) ITO (211) crystallite size and λENZ as a function of annealing temperature.
Fig. 13
Fig. 13 (a) X-ray diffraction pattern for a set of AZO samples with thickness 300 nm on Si substrate, with λENZ = 1620 nm (black, As Deposited), 1525 nm (red, 100 C 60 min in N2), 1405 nm (green, 200 C 60 min in N2), 1382 nm (blue, 225 C 60 min in N2), 1375 nm (cyan, 250 C 60 min in N2), 1403 nm (magenta, 275 C 60 min sin N2), 1423 nm (dark yellow, 300 C 60 min in N2), N.A. (orange, 400 C 60 min in N2). (b) AZO (002) crystallite size and λENZ as a function of annealing temperature.
Fig. 14
Fig. 14 (a) X-ray diffraction pattern for a set of TiN samples with thickness 300 nm on Si substrate, with λPS = 717 nm (black, As Deposited), 691 nm (red, 200 C 60 min in vacuum), 672 nm (green, 300 C 60 min in vacuum), 659 nm (blue, 400 C 60 min in vacuum), 633 nm (cyan, 500 C 60 min in vacuum), 591 nm (magenta, 600 C 60 min in vacuum), 553 nm (dark yellow, 700 C 60 min in vacuum), 541 nm (navy, 800 C 60 min in vacuum), 560 nm (purple, 900 C 60 min in vacuum). (b) TiN (200) crystallite size and λPS as a function of annealing temperature.
Fig. 15
Fig. 15 Real (a) and imaginary (b) part of permittivity of ITO thin (37 nm) film on Si substrate at a fixed temperature 750 °C for 60 min under different annealing gas ambient O2 (red), Ar (black), N2 (green).
Fig. 16
Fig. 16 Real (a) and imaginary (b) part of permittivity of AZO thin (37 nm) film on Si substrate at a fixed temperature 250 °C for 60 min under different annealing gas ambient O2 (red), Ar (black), N2 (green).

Tables (6)

Tables Icon

Table 1 ITO thin films annealing parameter on Si substrate

Tables Icon

Table 2 AZO thin films annealing parameter on Si substrate

Tables Icon

Table 3 TiN thin films annealing parameter on Si substrate

Tables Icon

Table 4 ITO thin films annealing parameter on fused silica substrate

Tables Icon

Table 5 AZO thin films annealing parameter on fused silica substrate

Tables Icon

Table 6 TiN thin films annealing parameter on fused silica substrate

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε 1 ( ω ) + i ε 2 ( ω ) = ε ω p 2 ω 2 + i Γ ω
ω p 2 = n e 2 ε 0 m *
T = ( 1 - R ) e α t
α ω = ( ω E g ) 1 / 2
E g = E g 0 + 2 2 m * ( 3 π 2 N ) 2 / 3

Metrics