Abstract

Ultrafast optical excitation of photocarriers has the potential to transform undoped semiconductor superlattices into semiconductor hyperbolic metamaterials (SHMs). In this paper, we investigate the optical properties associated with such ultrafast topological transitions. We first show reflectance, transmittance, and absorption under TE and TM plane wave incidence. In the unpumped state, the superlattice exhibits a frequency region with high reflectance (>80%) and a region with low reflectance (<1%) for both TE and TM polarizations over a wide range of incidence angles. In contrast, in the photopumped state, the reflectance for both frequencies and polarizations is very low (<1%) for a similar range of angles. Interestingly, this system can function as an all-optical reflection switch on ultrafast timescales. Furthermore, for TM incidence and close to the epsilon-near-zero point of the longitudinal permittivity, directional perfect absorption on ultrafast timescales may also be achieved. Finally, we discuss the onset of negative refraction in the photopumped state.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-material semiconductor hyperbolic metamaterials

D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law
Opt. Express 24(8) 8735-8745 (2016)

Volume plasmon polaritons in semiconductor hyperbolic metamaterials

Dongxia Wei, Christian Harris, and Stephanie Law
Opt. Mater. Express 7(7) 2672-2681 (2017)

Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse

E. G. Gamaly and A. V. Rode
J. Opt. Soc. Am. B 31(11) C36-C43 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  2. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  3. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectronics 2012, 9 (2012).
  4. L. Cheng, L. Wei, J. Xunya, and C. Juncheng, “Far-field super-resolution imaging with a planar hyperbolic metamaterial lens,” Europhys. Lett. 105(2), 28003 (2014).
    [Crossref]
  5. J. Bénédicto, E. Centeno, and A. Moreau, “Lens equation for flat lenses made with hyperbolic metamaterials,” Opt. Lett. 37(22), 4786–4788 (2012).
    [Crossref] [PubMed]
  6. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
    [Crossref] [PubMed]
  7. X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
    [Crossref]
  8. L. Gu, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Blue shift of spontaneous emission in hyperbolic metamaterial,” Sci. Rep. 4, 4969 (2014).
    [Crossref] [PubMed]
  9. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
    [Crossref] [PubMed]
  10. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
    [Crossref] [PubMed]
  11. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
    [Crossref]
  12. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
    [Crossref] [PubMed]
  13. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref] [PubMed]
  14. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
    [Crossref]
  15. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
    [Crossref] [PubMed]
  16. K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
    [Crossref]
  17. A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
    [Crossref]
  18. P. Shekhar and Z. Jacob, “Strong coupling in hyperbolic metamaterials,” Phys. Rev. B 90(4), 045313 (2014).
    [Crossref]
  19. S. Campione, S. Liu, T. S. Luk, and M. B. Sinclair, “Realizing high-quality, ultra-large momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B 32(9), 1809–1815 (2015).
    [Crossref]
  20. W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
    [Crossref] [PubMed]
  21. S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
    [Crossref] [PubMed]
  22. M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
    [Crossref]
  23. D. M. Pozar, Microwave Engineering (John Wiley and Sons, 2011).
  24. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  25. N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
    [Crossref] [PubMed]
  26. H. S. Loka and P. W. E. Smith, “Ultrafast all-optical switching in an asymmetric Fabry-Perot device using low-temperature-grown GaAs,” IEEE Photonics Technol. Lett. 10(12), 1733–1735 (1998).
    [Crossref]
  27. L. Qian, P. W. E. Smith, M. A. Matin, and B. J. Robinson, “Ultrafast all-optical asymmetric Fabry-Perot switch based on bulk beryllium-doped InGaAsP grown by He-plasma-assisted epitaxy,” in Conference on Lasers and Electro-Optics,380–381 (2000).
    [Crossref]
  28. A. J. Alcock, P. B. Corkum, and D. J. James, “A fast scalable switching technique for high‐power CO2 laser radiation,” Appl. Phys. Lett. 27(12), 680–682 (1975).
    [Crossref]
  29. P. B. Corkum and D. Keith, “Controlled switching of 10-micrometer radiation using semiconductor étalons,” J. Opt. Soc. Am. B 2(12), 1873–1879 (1985).
    [Crossref]
  30. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
    [Crossref]
  31. K. Halterman and J. M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express 22(6), 7337–7348 (2014).
    [Crossref] [PubMed]
  32. FDTD Solutions by FDTD Lumerical Inc, https://www.lumerical.com/ .

2015 (1)

2014 (6)

P. Shekhar and Z. Jacob, “Strong coupling in hyperbolic metamaterials,” Phys. Rev. B 90(4), 045313 (2014).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

K. Halterman and J. M. Elson, “Near-perfect absorption in epsilon-near-zero structures with hyperbolic dispersion,” Opt. Express 22(6), 7337–7348 (2014).
[Crossref] [PubMed]

L. Cheng, L. Wei, J. Xunya, and C. Juncheng, “Far-field super-resolution imaging with a planar hyperbolic metamaterial lens,” Europhys. Lett. 105(2), 28003 (2014).
[Crossref]

L. Gu, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Blue shift of spontaneous emission in hyperbolic metamaterial,” Sci. Rep. 4, 4969 (2014).
[Crossref] [PubMed]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

2013 (5)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

2012 (6)

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

J. Bénédicto, E. Centeno, and A. Moreau, “Lens equation for flat lenses made with hyperbolic metamaterials,” Opt. Lett. 37(22), 4786–4788 (2012).
[Crossref] [PubMed]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectronics 2012, 9 (2012).

2011 (1)

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[Crossref]

2009 (2)

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

2007 (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

2006 (1)

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

1998 (1)

H. S. Loka and P. W. E. Smith, “Ultrafast all-optical switching in an asymmetric Fabry-Perot device using low-temperature-grown GaAs,” IEEE Photonics Technol. Lett. 10(12), 1733–1735 (1998).
[Crossref]

1996 (1)

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

1992 (1)

W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
[Crossref] [PubMed]

1985 (1)

1975 (1)

A. J. Alcock, P. B. Corkum, and D. J. James, “A fast scalable switching technique for high‐power CO2 laser radiation,” Appl. Phys. Lett. 27(12), 680–682 (1975).
[Crossref]

Aközbek, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

Alcock, A. J.

A. J. Alcock, P. B. Corkum, and D. J. James, “A fast scalable switching technique for high‐power CO2 laser radiation,” Appl. Phys. Lett. 27(12), 680–682 (1975).
[Crossref]

Alekseyev, L.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Alù, A.

Argyropoulos, C.

Barnakov, Y.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Ben-Abdallah, P.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Bénédicto, J.

Biehs, S. A.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

Boltasseva, A.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[Crossref]

Braun, P. X.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

Brener, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Campione, S.

S. Campione, S. Liu, T. S. Luk, and M. B. Sinclair, “Realizing high-quality, ultra-large momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B 32(9), 1809–1815 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Capolino, F.

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Centeno, E.

Cheng, L.

L. Cheng, L. Wei, J. Xunya, and C. Juncheng, “Far-field super-resolution imaging with a planar hyperbolic metamaterial lens,” Europhys. Lett. 105(2), 28003 (2014).
[Crossref]

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

Choa, F.-S.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

Corkum, P. B.

P. B. Corkum and D. Keith, “Controlled switching of 10-micrometer radiation using semiconductor étalons,” J. Opt. Soc. Am. B 2(12), 1873–1879 (1985).
[Crossref]

A. J. Alcock, P. B. Corkum, and D. J. James, “A fast scalable switching technique for high‐power CO2 laser radiation,” Appl. Phys. Lett. 27(12), 680–682 (1975).
[Crossref]

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectronics 2012, 9 (2012).

D’Aguanno, G.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Delaunay, P. Y.

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Ellingson, R. J.

W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
[Crossref] [PubMed]

Elsaesser, T.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Elson, J. M.

Estakhri, N. M.

Fan, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Franz, K. J.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Gmachl, C.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Gu, L.

L. Gu, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Blue shift of spontaneous emission in hyperbolic metamaterial,” Sci. Rep. 4, 4969 (2014).
[Crossref] [PubMed]

Guclu, C.

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Gulia, M.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Guo, Y.

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectronics 2012, 9 (2012).

Halterman, K.

Hase, A.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Hoffman, A. J.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hoffman, D.

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Hood, A.

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Howard, S. S.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jacob, Z.

P. Shekhar and Z. Jacob, “Strong coupling in hyperbolic metamaterials,” Phys. Rev. B 90(4), 045313 (2014).
[Crossref]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectronics 2012, 9 (2012).

James, D. J.

A. J. Alcock, P. B. Corkum, and D. J. James, “A fast scalable switching technique for high‐power CO2 laser radiation,” Appl. Phys. Lett. 27(12), 680–682 (1975).
[Crossref]

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Jun, Y. C.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Juncheng, C.

L. Cheng, L. Wei, J. Xunya, and C. Juncheng, “Far-field super-resolution imaging with a planar hyperbolic metamaterial lens,” Europhys. Lett. 105(2), 28003 (2014).
[Crossref]

Kaindl, R. A.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Keith, D.

Kildishev, A. V.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[Crossref]

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Künzel, H.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Liu, S.

S. Campione, S. Liu, T. S. Luk, and M. B. Sinclair, “Realizing high-quality, ultra-large momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B 32(9), 1809–1815 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Liu, Z.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Loka, H. S.

H. S. Loka and P. W. E. Smith, “Ultrafast all-optical switching in an asymmetric Fabry-Perot device using low-temperature-grown GaAs,” IEEE Photonics Technol. Lett. 10(12), 1733–1735 (1998).
[Crossref]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Lugli, P.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Luk, T. S.

S. Campione, S. Liu, T. S. Luk, and M. B. Sinclair, “Realizing high-quality, ultra-large momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B 32(9), 1809–1815 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Lutgen, S.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Matin, M. A.

L. Qian, P. W. E. Smith, M. A. Matin, and B. J. Robinson, “Ultrafast all-optical asymmetric Fabry-Perot switch based on bulk beryllium-doped InGaAsP grown by He-plasma-assisted epitaxy,” in Conference on Lasers and Electro-Optics,380–381 (2000).
[Crossref]

Mattiucci, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

McClintock, R.

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Meglio, D.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Michel, E.

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Monticone, F.

Moreau, A.

Naik, G. V.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[Crossref]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Narimanov, E. E.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectronics 2012, 9 (2012).

Nguyen, B. M.

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Ni, X.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[Crossref]

Noginov, M. A.

L. Gu, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Blue shift of spontaneous emission in hyperbolic metamaterial,” Sci. Rep. 4, 4969 (2014).
[Crossref] [PubMed]

Nozik, A. J.

W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
[Crossref] [PubMed]

Pelouch, W. S.

W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Powers, P. E.

W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
[Crossref] [PubMed]

Qian, L.

L. Qian, P. W. E. Smith, M. A. Matin, and B. J. Robinson, “Ultrafast all-optical asymmetric Fabry-Perot switch based on bulk beryllium-doped InGaAsP grown by He-plasma-assisted epitaxy,” in Conference on Lasers and Electro-Optics,380–381 (2000).
[Crossref]

Razeghi, M.

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Robinson, B. J.

L. Qian, P. W. E. Smith, M. A. Matin, and B. J. Robinson, “Ultrafast all-optical asymmetric Fabry-Perot switch based on bulk beryllium-doped InGaAsP grown by He-plasma-assisted epitaxy,” in Conference on Lasers and Electro-Optics,380–381 (2000).
[Crossref]

Shalaev, V. M.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[Crossref]

Shekhar, P.

P. Shekhar and Z. Jacob, “Strong coupling in hyperbolic metamaterials,” Phys. Rev. B 90(4), 045313 (2014).
[Crossref]

Sinclair, M. B.

S. Campione, S. Liu, T. S. Luk, and M. B. Sinclair, “Realizing high-quality, ultra-large momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B 32(9), 1809–1815 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Sivco, D. L.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Smith, P. W. E.

H. S. Loka and P. W. E. Smith, “Ultrafast all-optical switching in an asymmetric Fabry-Perot device using low-temperature-grown GaAs,” IEEE Photonics Technol. Lett. 10(12), 1733–1735 (1998).
[Crossref]

L. Qian, P. W. E. Smith, M. A. Matin, and B. J. Robinson, “Ultrafast all-optical asymmetric Fabry-Perot switch based on bulk beryllium-doped InGaAsP grown by He-plasma-assisted epitaxy,” in Conference on Lasers and Electro-Optics,380–381 (2000).
[Crossref]

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Soukoulis, C. M.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Sridhar, A.

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

Strangi, G.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Szmyd, D. M.

W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
[Crossref] [PubMed]

Tang, C. L.

W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
[Crossref] [PubMed]

Tschikin, M.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Tumkur, T. U.

L. Gu, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Blue shift of spontaneous emission in hyperbolic metamaterial,” Sci. Rep. 4, 4969 (2014).
[Crossref] [PubMed]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Wei, L.

L. Cheng, L. Wei, J. Xunya, and C. Juncheng, “Far-field super-resolution imaging with a planar hyperbolic metamaterial lens,” Europhys. Lett. 105(2), 28003 (2014).
[Crossref]

Wei, Y.

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Woerner, M.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Xunya, J.

L. Cheng, L. Wei, J. Xunya, and C. Juncheng, “Far-field super-resolution imaging with a planar hyperbolic metamaterial lens,” Europhys. Lett. 105(2), 28003 (2014).
[Crossref]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Zhu, G.

L. Gu, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Blue shift of spontaneous emission in hyperbolic metamaterial,” Sci. Rep. 4, 4969 (2014).
[Crossref] [PubMed]

Adv. OptoElectronics (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectronics 2012, 9 (2012).

Appl. Phys. B (1)

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, and V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[Crossref]

Appl. Phys. Lett. (2)

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

A. J. Alcock, P. B. Corkum, and D. J. James, “A fast scalable switching technique for high‐power CO2 laser radiation,” Appl. Phys. Lett. 27(12), 680–682 (1975).
[Crossref]

Europhys. Lett. (1)

L. Cheng, L. Wei, J. Xunya, and C. Juncheng, “Far-field super-resolution imaging with a planar hyperbolic metamaterial lens,” Europhys. Lett. 105(2), 28003 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. S. Loka and P. W. E. Smith, “Ultrafast all-optical switching in an asymmetric Fabry-Perot device using low-temperature-grown GaAs,” IEEE Photonics Technol. Lett. 10(12), 1733–1735 (1998).
[Crossref]

J. Appl. Phys. (1)

A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

P. Shekhar and Z. Jacob, “Strong coupling in hyperbolic metamaterials,” Phys. Rev. B 90(4), 045313 (2014).
[Crossref]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Phys. Rev. B Condens. Matter (1)

W. S. Pelouch, R. J. Ellingson, P. E. Powers, C. L. Tang, D. M. Szmyd, and A. J. Nozik, “Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities,” Phys. Rev. B Condens. Matter 45(3), 1450–1453 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77(17), 3657–3660 (1996).
[Crossref] [PubMed]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, and R. McClintock, “Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays,” Proc. SPIE 6206, 62060N (2006).
[Crossref]

Sci. Rep. (3)

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

L. Gu, T. U. Tumkur, G. Zhu, and M. A. Noginov, “Blue shift of spontaneous emission in hyperbolic metamaterial,” Sci. Rep. 4, 4969 (2014).
[Crossref] [PubMed]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Science (1)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Other (4)

FDTD Solutions by FDTD Lumerical Inc, https://www.lumerical.com/ .

D. M. Pozar, Microwave Engineering (John Wiley and Sons, 2011).

P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

L. Qian, P. W. E. Smith, M. A. Matin, and B. J. Robinson, “Ultrafast all-optical asymmetric Fabry-Perot switch based on bulk beryllium-doped InGaAsP grown by He-plasma-assisted epitaxy,” in Conference on Lasers and Electro-Optics,380–381 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Ultrafast transition to the hyperbolic state. (a) A superlattice of alternating lightly doped (1018 cm−3) InAs and undoped GaSb layers with permittivities ε m and ε d and thicknesses d m and d d , respectively. The upper and bottom spaces have permittivities ε up and ε bot , respectively. (b) The effective medium permittivities ε t and ε l of the superlattice in (a). (c) By photopumping the structure in (a), carriers are generated within InAs, which now exhibits a doping concentration of 2x1019 cm−3. (d) The effective medium permittivities ε t and ε l of the transient SHM in (c). The colored boxes indicate a type II hyperbolic dispersion (T-II) region, an elliptic dispersion (E) region, and a type I hyperbolic dispersion (T-I) region. In (a) and (c), the black dashed line indicates the reference plane for reflectance computations; and the upper ( Z up ) and bottom ( Z down ) impedances are explicitly indicated.
Fig. 2
Fig. 2 The TE reflectance and transmittance versus frequency and incidence angle for the (a, c) unpumped and (b, d) photopumped structure of Fig. 1, obtained using the effective medium description. The white dashed lines in (a, b) indicate the dispersion of the m = 0, 1 Fabry-Perot modes of the SHM stack.
Fig. 3
Fig. 3 The TM reflectance and transmittance versus frequency and incidence angle for the (a, c) unpumped and (b, d) photopumped structure of Fig. 1, obtained using the effective medium description. The white dashed lines in (a, b) indicate the dispersion of the m = 0, 1 Fabry-Perot modes of the SHM stack.
Fig. 4
Fig. 4 Reflectance versus frequency and incidence angle for the (photopumped) structure of Fig. 1(c): (a, b) TE incidence and (c, d) TM incidence. These results were computed using (a, c) the homogenized and (b, d) the superlattice models.
Fig. 5
Fig. 5 (a) TE and (b) TM reflectances of the OFF (photopumped) and ON (unpumped) states of the structure of Fig. 1 working as a reflection mode switch. These results were computed using the effective medium model.
Fig. 6
Fig. 6 Absorption versus frequency and incidence angle for the (a) unpumped and (b) photopumped structure of Fig. 1 under TM incidence. These results were computed using the effective medium model.
Fig. 7
Fig. 7 (a, b) Dispersion diagram at 68 THz for the (a) unpumped and (b) photopumped superlattices, computed using Bloch theory. Notice the transition between an ellipse and a hyperbola. (c, d) Real part of the phasor of the transverse magnetic field at 68 THz for an interface between air and (c) unpumped and (d) photopumped superlattices. Notice the transition between positive and negative refraction. (e, f) As in (c, d), but for a superlattice slab with finite thickness. Notice the transition between positive and negative refraction within the slab. In (c-f), the dashed black lines depict the boundaries of the superlattice.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( E in H in ) = ( A B C D ) ( E out H out ) , with ( A B C D ) = ( cos ( k l d ) i Z sin ( k l d ) i sin ( k l d ) / Z cos ( k l d ) )
( A t B t C t D t ) = ( A B C D ) 1 × ( A B C D ) 2 × × ( A B C D ) N
Γ = Z down Z up Z down + Z up
TE polarization: k l 2 = k 0 2 ε t ( 1 ε up sin 2 θ ε t ) .

Metrics