Abstract

We report on the fabrication of ridge waveguides in zinc selenide (ZnSe) crystal by using swift Kr8+ ion irradiation and precise diamond blade dicing. The ridge waveguides operating at mid-infrared wavelength of 4 μm support multi-mode guidance. The minimum propagation loss of the ridge waveguide is measured to be as low as ~1.1 dB/cm. The simulated modal profiles of the ridge waveguides are in good agreement with the measured near-field intensity distributions. The micro-Raman spectra indicate that there is no significant lattice change in the ZnSe waveguides after the Kr8+ ion irradiation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing

Yuechen Jia, Christian E. Rüter, Shavkat Akhmadaliev, Shengqiang Zhou, Feng Chen, and Detlef Kip
Opt. Mater. Express 3(4) 433-438 (2013)

Second harmonic generation of diamond-blade diced KTiOPO4 ridge waveguides

Chen Chen, Christian E. Rüter, Martin F. Volk, Cheng Chen, Zhen Shang, Qingming Lu, Shavkat Akhmadaliev, Shengqiang Zhou, Feng Chen, and Detlef Kip
Opt. Express 24(15) 16434-16439 (2016)

Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing

Martin F. Volk, Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Opt. Express 24(2) 1386-1391 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK, 1994).
  2. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, New York, 1999).
  3. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3–4), 165–182 (2008).
    [Crossref]
  4. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  5. G. Lifante, Integrated Photonics: Fundamentals (Wiley, West Sussex, UK, 2003).
  6. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
    [Crossref]
  7. I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
    [Crossref]
  8. F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009).
    [Crossref] [PubMed]
  9. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
    [Crossref]
  10. Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011).
    [Crossref] [PubMed]
  11. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
    [Crossref]
  12. G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3.,” Opt. Express 20(4), 4444–4453 (2012).
    [Crossref] [PubMed]
  13. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [Crossref]
  14. Y. Tan, Y. C. Yao, J. R. Macdonald, A. K. Kar, H. H. Yu, H. J. Zhang, and F. Chen, “Self-Q-switched waveguide laser based on femtosecond laser inscribed Nd:Cr:YVO4 crystal,” Opt. Lett. 39(18), 5289–5292 (2014).
    [Crossref]
  15. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
    [Crossref] [PubMed]
  16. G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007).
    [Crossref] [PubMed]
  17. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
    [Crossref] [PubMed]
  18. Y. C. Jia, C. E. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
    [Crossref]
  19. B. Jean and T. Bende, “Mid-IR laser applications in medicine,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, ed. (Springer, 2003).
  20. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 microm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34(10), 1513–1515 (2009).
    [Crossref] [PubMed]
  21. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
    [Crossref]
  22. H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
    [Crossref]
  23. M. Balu, J. Hales, D. Hagan, and E. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express 13(10), 3594–3599 (2005).
    [Crossref] [PubMed]
  24. H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
    [Crossref]
  25. C. Cunningham, “Future Optical Technologies for Telescopes and Instruments,” Nat. Photonics 3(5), 239–241 (2009).
    [Crossref]
  26. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17(3), 1963–1969 (2009).
    [Crossref] [PubMed]
  27. B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
    [Crossref]
  28. M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
    [Crossref]
  29. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
    [Crossref] [PubMed]
  30. Y. C. Jia and F. Chen, “Optical channel waveguides in ZnSe single crystal produced by proton implantation,” Opt. Mater. Express 2(4), 455–460 (2012).
    [Crossref]
  31. J. F. Ziegler, computer code, SRIM, http://www.srim.org .
  32. R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
    [Crossref]
  33. Rsoft Design Group, Computer Software BeamPROP version 8.0, http://www.rsoftdesign.com .
  34. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992).
    [Crossref] [PubMed]
  35. F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
    [Crossref]
  36. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3126–3129 (2004).
    [Crossref]

2014 (1)

2013 (1)

2012 (4)

2011 (2)

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
[Crossref]

Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (6)

2008 (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3–4), 165–182 (2008).
[Crossref]

2007 (1)

2006 (3)

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
[Crossref]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

2005 (1)

2004 (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3126–3129 (2004).
[Crossref]

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

1998 (4)

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

1996 (1)

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

1992 (1)

1987 (1)

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Agulló-López, F.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

Aitchison, J. S.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

Akhmadaliev, S.

Allington-Smith, J.

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Armenise, M. N.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Asobe, M.

Atuchin, V. V.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Avrahami, Y.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Bacher, G.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Balu, M.

Bardyszewski, W.

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Beecher, S.

Beecher, S. J.

Bellanca, G.

Bentini, G. G.

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3.,” Opt. Express 20(4), 4444–4453 (2012).
[Crossref] [PubMed]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Bianconi, M.

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3.,” Opt. Express 20(4), 4444–4453 (2012).
[Crossref] [PubMed]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Bookey, H. T.

Brown, G.

Chen, F.

Y. Tan, Y. C. Yao, J. R. Macdonald, A. K. Kar, H. H. Yu, H. J. Zhang, and F. Chen, “Self-Q-switched waveguide laser based on femtosecond laser inscribed Nd:Cr:YVO4 crystal,” Opt. Lett. 39(18), 5289–5292 (2014).
[Crossref]

Y. C. Jia, C. E. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

Y. C. Jia and F. Chen, “Optical channel waveguides in ZnSe single crystal produced by proton implantation,” Opt. Mater. Express 2(4), 455–460 (2012).
[Crossref]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011).
[Crossref] [PubMed]

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009).
[Crossref] [PubMed]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3–4), 165–182 (2008).
[Crossref]

Chiarini, M.

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3.,” Opt. Express 20(4), 4444–4453 (2012).
[Crossref] [PubMed]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Cunningham, C.

C. Cunningham, “Future Optical Technologies for Telescopes and Instruments,” Nat. Photonics 3(5), 239–241 (2009).
[Crossref]

De Nicola, P.

Degl’lnnocenti, R.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
[Crossref]

Dong, N.

Eisert, D.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Forchel, A.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

García, G.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

García-Blanco, S.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

García-Navarro, A.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

Garmire, E.

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Guarina, A.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
[Crossref]

Gunter, P.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
[Crossref]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Hagan, D.

Hahn, B.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Hales, J.

Hänsch, T. W.

Hartmann, H.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Hirano, Y.

Hommel, D.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Hong, F. L.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Hvam, J. M.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Imaki, M.

Jaque, D.

Jia, Y. C.

Kaiser, S.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Kameyama, S.

Kar, A. K.

Kawakami, S.

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Kim, B. G.

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Kip, D.

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3126–3129 (2004).
[Crossref]

Kühnelt, M.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Landwehr, G.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Langbein, W.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Leichtner, T.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

Liarokapis, E.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Macdonald, J. R.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Meilán, P. F.

Mendez, C.

Menin, A.

Merchant, C.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

Metzger, T. H.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Montanari, G. B.

Moretti, P.

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3126–3129 (2004).
[Crossref]

Nakajima, M.

Narusawa, T.

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
[Crossref]

Nishida, Y.

Nishikawa, T.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Nubile, A.

Olivares, J.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

Ozawa, A.

Parini, A.

Passaro, V. M. N.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Peisl, J.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Poberaj, G.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
[Crossref]

Psaila, N. D.

Qiu, F.

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
[Crossref]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Reidt, S.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
[Crossref]

Ren, Y.

Rezzonico, D.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
[Crossref]

Rodenas, A.

Ródenas, A.

Roso, L.

Rüter, C. E.

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

Sakaizawa, D.

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Sauer, W.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Savatinova, I.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Savova, I.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Schüll, K.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Shibata, N.

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Siche, D.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Sugliani, S.

Tan, Y.

Thomson, R. R.

Torchia, G. A.

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Ueno, S.

Van Stryland, E.

Wagner, H. P.

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Wenisch, H.

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Yao, Y. C.

Yevick, D.

Yu, H. H.

Zembutsu, S.

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

Zhang, H. J.

Zhou, S. Q.

Ziling, C. C.

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Zolotoyabko, E.

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Appl. Phys. B (2)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
[Crossref]

Appl. Phys. Lett. (3)

B. G. Kim, E. Garmire, N. Shibata, and S. Zembutsu, “Optical bistability and nonlinear switching due to increasing absorption in single-crystal ZnSe waveguides,” Appl. Phys. Lett. 51(7), 475–477 (1987).
[Crossref]

M. Kühnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher, and A. Forchel, “Quasiphase matched second harmonic generation in ZnSe waveguide structures modulated by focused ion beam implantation,” Appl. Phys. Lett. 73(5), 584–586 (1998).
[Crossref]

E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3,” Appl. Phys. Lett. 73(10), 1352–1354 (1998).
[Crossref]

Crit. Rev. Solid State Mater. Sci. (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3–4), 165–182 (2008).
[Crossref]

J. Appl. Phys. (2)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[Crossref]

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100(11), 113121 (2006).
[Crossref]

J. Phys. D (1)

I. Savatinova, I. Savova, E. Liarokapis, C. C. Ziling, V. V. Atuchin, M. N. Armenise, and V. M. N. Passaro, “A comparative analysis of Rb:KTP and Cs:KTP optical waveguides,” J. Phys. D 31(14), 1667–1672 (1998).
[Crossref]

Laser Photonics Rev. (1)

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Nat. Photonics (1)

C. Cunningham, “Future Optical Technologies for Telescopes and Instruments,” Nat. Photonics 3(5), 239–241 (2009).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1–2), 177–180 (2006).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Opt. Lett. (6)

Opt. Mater. Express (2)

Phys. Rev. B (1)

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Phys. Status Solidi, C Conf. Crit. Rev. (1)

S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi, C Conf. Crit. Rev. 1(11), 3126–3129 (2004).
[Crossref]

Semicond. Sci. Technol. (1)

H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, and H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996).
[Crossref]

Other (6)

J. F. Ziegler, computer code, SRIM, http://www.srim.org .

Rsoft Design Group, Computer Software BeamPROP version 8.0, http://www.rsoftdesign.com .

B. Jean and T. Bende, “Mid-IR laser applications in medicine,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, ed. (Springer, 2003).

G. Lifante, Integrated Photonics: Fundamentals (Wiley, West Sussex, UK, 2003).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK, 1994).

E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, New York, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic process of the ZnSe ridge waveguides fabrication: (a) 1.2 GeV Kr8+ ion irradiation and (b) diamond blade dicing.
Fig. 2
Fig. 2 Schematic plot of the end-face coupling arrangement utilized to investigate the guiding properties of ridge waveguides in ZnSe crystal.
Fig. 3
Fig. 3 (a) Electronic (blue line) and nuclear (red line) stopping powers as function of penetrate depth from the surface and (b) refractive index profile at 4 μm wavelength of the 1.2 GeV Kr8+ ion irradiated ZnSe crystal.
Fig. 4
Fig. 4 Optical microscope images of the cross sections (a) and (e), topographic SEM images of the sidewalls (b) and (f), measured near-field intensity distributions at 4 μm (c) and (g) and simulated modal profiles by using FD-BMP code (d) and (h) of the ridge waveguides WG1 and WG2. The dashed lines represent the position of the ridge structures.
Fig. 5
Fig. 5 (a) Micro-Raman spectra of the 1.2 GeV Kr8+ ion irradiated ZnSe crystal at different depths along the ion tracks (b) The amplification of the first Raman scattering active mode at 141 cm−1, and (c) the corresponding Raman intensity distributions of this mode along the ion tracks. (The red dashed line represents the substrate Raman intensity.)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn= sin 2 Θ m 2n

Metrics