Abstract

In this paper we propose a magnetically tunable plasmons resonator based on a graphene-coated nanowire. Due to the magneto-optical effect under an external magnetic field, the circumferential propagation of graphene plasmons on a magneto-optical nanowire becomes non-reciprocal with the modal indices depend on plasmons traveling directions (clockwise or anti-clockwise). When coupled with a graphene sheet waveguide, the two components form a graphene plasmons filter for which the shift direction of transmittance spectrum is determined by the direction of input plasmons. The resonant wavelengths of resonator are obtained through resonant cavity theory and verified by numerical solutions. Furthermore, the non-reciprocal transmittance enables such structures to achieve the function of a plasmons isolator where the isolation could be tuned by the amplitude of an external magnetic field and the enabled plasmons propagation direction could be switched by reversing the direction of external magnetic field. Under proper structural parameters and magnetic field, an isolation ratio over 25 dB is obtained. The proposed magnetically tunable plasmons resonator may provide new inspiration to graphene plasmonics devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene plasmons isolator based on non-reciprocal coupling

Bofeng Zhu, Guobin Ren, Yixiao Gao, Beilei Wu, Qiaoyi Wang, Chenglong Wan, and Shuisheng Jian
Opt. Express 23(12) 16071-16083 (2015)

Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens

Fei Fan, Sai Chen, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 21(7) 8614-8621 (2013)

Optical non-reciprocity induced by asymmetrical dispersion of Tamm plasmon polaritons in terahertz magnetoplasmonic crystals

Qian Yi Shi, Hui Yuan Dong, Kin Hung Fung, Zheng-gao Dong, and Jin Wang
Opt. Express 26(26) 33613-33624 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  2. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  3. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
    [Crossref] [PubMed]
  4. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [PubMed]
  5. D. Rafizadeh, J. P. Zhang, R. C. Tiberio, and S. T. Ho, “Propagation loss measurements in semiconductor microcavity ring and disk resonators,” J. Lightwave Technol. 16(7), 1308–1314 (1998).
    [Crossref]
  6. A. Delage, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-Dependent Model of a Ring Resonator Sensor Excited by a Directional Coupler,” J. Lightwave Technol. 27(9), 1172–1180 (2009).
    [Crossref]
  7. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
    [Crossref] [PubMed]
  8. B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689 (2003).
    [Crossref]
  9. K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
    [Crossref]
  10. P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
    [Crossref]
  11. Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, “Analytical model for plasmon modes in graphene-coated nanowire,” Opt. Express 22(20), 24322–24331 (2014).
    [Crossref] [PubMed]
  12. Y. Gao, G. Ren, B. Zhu, J. Wang, and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide,” Opt. Lett. 39(20), 5909–5912 (2014).
    [Crossref] [PubMed]
  13. B. Zhu, G. Ren, Y. Gao, Y. Yang, B. Wu, Y. Lian, and S. Jian, “Nanofocusing in the graphene-coated tapered nanowire infrared probe,” J. Opt. Soc. Am. B 32(5), 955 (2015).
    [Crossref]
  14. F. Liu, C. Qian, and Y. D. Chong, “Directional excitation of graphene surface plasmons,” Opt. Express 23(3), 2383–2391 (2015).
    [Crossref] [PubMed]
  15. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  16. Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
    [Crossref] [PubMed]
  17. X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
    [Crossref]
  18. X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
    [Crossref]
  19. L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Physics-Uspekhi 51(9), 887–897 (2008).
    [Crossref]
  20. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref] [PubMed]
  21. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  22. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  23. J. Tao, X. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, “Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth,” Opt. Lett. 39(2), 271–274 (2014).
    [Crossref] [PubMed]
  24. B. Biel, F. Triozon, X. Blase, and S. Roche, “Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances,” Nano Lett. 9(7), 2725–2729 (2009).
    [Crossref] [PubMed]
  25. V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical Isolator Utilizing Surface Plasmons,” Materials (Basel) 5(12), 857–871 (2012).
    [Crossref]
  26. J. Brion, R. Wallis, A. Hartstein, and E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
    [Crossref]
  27. X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
    [Crossref]
  28. S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
    [Crossref]
  29. R. A. Stradling and R. A. Wood, “The temperature dependence of the band-edge effective masses of InSb, InAs and GaAs as deduced from magnetophonon magnetoresistance measurements,” J. Phys. C Solid State Phys. 3(5), L94–L99 (1970).
    [Crossref]
  30. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
    [Crossref] [PubMed]
  31. C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, “Giant spin Seebeck effect in a non-magnetic material,” Nature 487(7406), 210–213 (2012).
    [Crossref] [PubMed]
  32. L. P. Rokhinson, X. Liu, and J. K. Furdyna, “The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles,” Nat. Phys. 8(11), 795–799 (2012).
    [Crossref]
  33. N. A. Pike and D. Stroud, “Model for the spin-dependent Seebeck coefficient of InSb in a magnetic field,” Phys. Rev. B 90(17), 174435 (2014).
    [Crossref]
  34. D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
    [Crossref]
  35. M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
    [Crossref]
  36. D. L. Sounas and C. Caloz, “Graphene-based non-reciprocal spatial isolator,” IEEE International Symposium on Antennas and Propagation 1597–1600 (2011).

2015 (2)

2014 (8)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, “Analytical model for plasmon modes in graphene-coated nanowire,” Opt. Express 22(20), 24322–24331 (2014).
[Crossref] [PubMed]

Y. Gao, G. Ren, B. Zhu, J. Wang, and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide,” Opt. Lett. 39(20), 5909–5912 (2014).
[Crossref] [PubMed]

J. Tao, X. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, “Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth,” Opt. Lett. 39(2), 271–274 (2014).
[Crossref] [PubMed]

N. A. Pike and D. Stroud, “Model for the spin-dependent Seebeck coefficient of InSb in a magnetic field,” Phys. Rev. B 90(17), 174435 (2014).
[Crossref]

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

2013 (3)

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
[Crossref] [PubMed]

2012 (7)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical Isolator Utilizing Surface Plasmons,” Materials (Basel) 5(12), 857–871 (2012).
[Crossref]

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, “Giant spin Seebeck effect in a non-magnetic material,” Nature 487(7406), 210–213 (2012).
[Crossref] [PubMed]

L. P. Rokhinson, X. Liu, and J. K. Furdyna, “The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles,” Nat. Phys. 8(11), 795–799 (2012).
[Crossref]

2010 (1)

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

2009 (4)

2008 (2)

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Physics-Uspekhi 51(9), 887–897 (2008).
[Crossref]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (1)

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689 (2003).
[Crossref]

1998 (1)

1996 (1)

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

1989 (1)

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

1972 (1)

J. Brion, R. Wallis, A. Hartstein, and E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

1970 (1)

R. A. Stradling and R. A. Wood, “The temperature dependence of the band-edge effective masses of InSb, InAs and GaAs as deduced from magnetophonon magnetoresistance measurements,” J. Phys. C Solid State Phys. 3(5), L94–L99 (1970).
[Crossref]

Aarnio, J.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Ando, K.

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical Isolator Utilizing Surface Plasmons,” Materials (Basel) 5(12), 857–871 (2012).
[Crossref]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Barnham, K. W. J.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Biel, B.

B. Biel, F. Triozon, X. Blase, and S. Roche, “Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances,” Nano Lett. 9(7), 2725–2729 (2009).
[Crossref] [PubMed]

Blase, X.

B. Biel, F. Triozon, X. Blase, and S. Roche, “Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances,” Nano Lett. 9(7), 2725–2729 (2009).
[Crossref] [PubMed]

Boulais, K. A.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

Brener, I.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

Brion, J.

J. Brion, R. Wallis, A. Hartstein, and E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Burstein, E.

J. Brion, R. Wallis, A. Hartstein, and E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Caloz, C.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Cheben, P.

Chen, B.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, J.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Chen, Y.

Cheng, Y.

Chiang, K. S.

Chong, Y. D.

Crassee, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Cui, T. J.

Dalton, L.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689 (2003).
[Crossref]

Delage, A.

Densmore, A.

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Dong, Z. G.

Droopad, R.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Dubrovkin, A.

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Physics-Uspekhi 51(9), 887–897 (2008).
[Crossref]

Fallahi, A.

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Furdyna, J. K.

L. P. Rokhinson, X. Liu, and J. K. Furdyna, “The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles,” Nat. Phys. 8(11), 795–799 (2012).
[Crossref]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Gao, Y.

Gaponenko, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Gehman, V.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gin, A.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

Gong, Y.

Goodhue, W.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guermoune, A.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Gunn, C.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689 (2003).
[Crossref]

Hartstein, A.

J. Brion, R. Wallis, A. Hartstein, and E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

He, X.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Heimala, P.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Heinamaki, A.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Heremans, J. P.

C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, “Giant spin Seebeck effect in a non-magnetic material,” Nature 487(7406), 210–213 (2012).
[Crossref] [PubMed]

Ho, S. T.

Holmes, S. N.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Hu, B.

Hu, T. Y.

X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Janz, S.

Jaworski, C. M.

C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, “Giant spin Seebeck effect in a non-magnetic material,” Nature 487(7406), 210–213 (2012).
[Crossref] [PubMed]

Jian, S.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Johnston-Halperin, E.

C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, “Giant spin Seebeck effect in a non-magnetic material,” Nature 487(7406), 210–213 (2012).
[Crossref] [PubMed]

Katila, P.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Kuzmenko, A. B.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Lamontagne, B.

Langston, W.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

Lapointe, J.

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Laverty, J.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Lawson, R.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689 (2003).
[Crossref]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Lian, Y.

Liu, F.

Liu, H.

Liu, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liu, X.

L. P. Rokhinson, X. Liu, and J. K. Furdyna, “The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles,” Nat. Phys. 8(11), 795–799 (2012).
[Crossref]

Liu, Z.

X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Long, K.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

Lu, W. B.

Maune, B.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689 (2003).
[Crossref]

McKinnon, R. W.

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Miao, X.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mosig, J. R.

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Myers, R. C.

C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, “Giant spin Seebeck effect in a non-magnetic material,” Nature 487(7406), 210–213 (2012).
[Crossref] [PubMed]

Nguyen, H. V.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Ni, Z. H.

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Orlita, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Ostler, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Parker, S. D.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Pashley, D. W.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Passmore, B.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

Perruisseau-Carrier, J.

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Phillips, C. C.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Pike, N. A.

N. A. Pike and D. Stroud, “Model for the spin-dependent Seebeck coefficient of InSb in a magnetic field,” Phys. Rev. B 90(17), 174435 (2014).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Post, E.

Potemski, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Qian, C.

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Rafizadeh, D.

Rao, Y.

Rayms-Keller, A.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

Ren, G.

Roche, S.

B. Biel, F. Triozon, X. Blase, and S. Roche, “Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances,” Nano Lett. 9(7), 2725–2729 (2009).
[Crossref] [PubMed]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Rokhinson, L. P.

L. P. Rokhinson, X. Liu, and J. K. Furdyna, “The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles,” Nat. Phys. 8(11), 795–799 (2012).
[Crossref]

Rule, D. W.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

Saito, H.

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical Isolator Utilizing Surface Plasmons,” Materials (Basel) 5(12), 857–871 (2012).
[Crossref]

Santiago, F.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

Scherer, A.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689 (2003).
[Crossref]

Schmid, J. H.

Seyller, T.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Shaner, E.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Siaj, M.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Simmons, S.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

Skulason, H. S.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Skuras, E.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Sounas, D. L.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Staton-Bevan, A.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Storey, C.

Stradling, R. A.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

R. A. Stradling and R. A. Wood, “The temperature dependence of the band-edge effective masses of InSb, InAs and GaAs as deduced from magnetophonon magnetoresistance measurements,” J. Phys. C Solid State Phys. 3(5), L94–L99 (1970).
[Crossref]

Stroud, D.

N. A. Pike and D. Stroud, “Model for the spin-dependent Seebeck coefficient of InSb in a magnetic field,” Phys. Rev. B 90(17), 174435 (2014).
[Crossref]

Szkopek, T.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Tamagnone, M.

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Tao, J.

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Thomas, R.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Tian, J.-G.

X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Tiberio, R. C.

Tong, L.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Triozon, F.

B. Biel, F. Triozon, X. Blase, and S. Roche, “Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances,” Nano Lett. 9(7), 2725–2729 (2009).
[Crossref] [PubMed]

Vangala, S.

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Waldron, P.

Wallis, R.

J. Brion, R. Wallis, A. Hartstein, and E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Walter, A. L.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Wang, D. N.

X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Wang, H.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, H. Z.

Wang, J.

Wang, Q. J.

Wang, T. B.

Wang, Z.

Wen, X. W.

Williams, R. L.

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Wood, R. A.

R. A. Stradling and R. A. Wood, “The temperature dependence of the band-edge effective masses of InSb, InAs and GaAs as deduced from magnetophonon magnetoresistance measurements,” J. Phys. C Solid State Phys. 3(5), L94–L99 (1970).
[Crossref]

Wu, B.

Wu, Y.

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xu, D.-X.

Xu, H. J.

Xu, M.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Xu, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yang, M.

X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Yang, Y.

Yao, B.

Yin, C. P.

Yu, X.

Yuasa, S.

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical Isolator Utilizing Surface Plasmons,” Materials (Basel) 5(12), 857–871 (2012).
[Crossref]

Zayets, V.

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical Isolator Utilizing Surface Plasmons,” Materials (Basel) 5(12), 857–871 (2012).
[Crossref]

Zhang, A.

Zhang, H.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

Zhang, J. P.

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Zhang, W.

Zhang, X.

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Zhu, B.

Zhu, W.

ACS Nano (1)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett. 96(10), 101111 (2010).
[Crossref]

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83(23), 4689 (2003).
[Crossref]

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. He, X. Zhang, H. Zhang, and M. Xu, “Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4500107 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. He, Z. Liu, D. N. Wang, M. Yang, T. Y. Hu, and J.-G. Tian, “Saturable Absorber Based on Graphene-Covered-Microfiber,” IEEE Photonics Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

J. Phys. C Solid State Phys. (1)

R. A. Stradling and R. A. Wood, “The temperature dependence of the band-edge effective masses of InSb, InAs and GaAs as deduced from magnetophonon magnetoresistance measurements,” J. Phys. C Solid State Phys. 3(5), L94–L99 (1970).
[Crossref]

Materials (Basel) (1)

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical Isolator Utilizing Surface Plasmons,” Materials (Basel) 5(12), 857–871 (2012).
[Crossref]

Nano Lett. (3)

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

B. Biel, F. Triozon, X. Blase, and S. Roche, “Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances,” Nano Lett. 9(7), 2725–2729 (2009).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, “Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices,” Nat. Photonics 8(7), 556–563 (2014).
[Crossref]

Nat. Phys. (1)

L. P. Rokhinson, X. Liu, and J. K. Furdyna, “The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles,” Nat. Phys. 8(11), 795–799 (2012).
[Crossref]

Nature (3)

C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, “Giant spin Seebeck effect in a non-magnetic material,” Nature 487(7406), 210–213 (2012).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (2)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

N. A. Pike and D. Stroud, “Model for the spin-dependent Seebeck coefficient of InSb in a magnetic field,” Phys. Rev. B 90(17), 174435 (2014).
[Crossref]

Phys. Rev. Lett. (1)

J. Brion, R. Wallis, A. Hartstein, and E. Burstein, “Theory of Surface Magnetoplasmons in Semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[Crossref]

Physics-Uspekhi (1)

L. A. Falkovsky, “Optical properties of graphene and IV–VI semiconductors,” Physics-Uspekhi 51(9), 887–897 (2008).
[Crossref]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

S. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, “Observation and control of the amphoteric behaviour of Si-doped InSb grown on GaAs by MBE,” Semicond. Sci. Technol. 4(8), 663–676 (1989).
[Crossref]

Other (1)

D. L. Sounas and C. Caloz, “Graphene-based non-reciprocal spatial isolator,” IEEE International Symposium on Antennas and Propagation 1597–1600 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed structure on plane xy with plasmons input from Port #1 along x+ direction (a) and Port #2 along x- direction (b). The plasmons traveling directions on GNW structure are shown via orange arrows, i.e. anti-clockwise in (a) and clockwise in (b). The green region is the InSb nanowire and an external magnetic field B is parallel to z axis.
Fig. 2
Fig. 2 Dependencies of the real modal indices of plasmons on a GNW with anti-clockwise and clockwise traveling directions on wavelengths (a) with B = 3T and on external magnetic field B (b) with wavelength 8.5μm. For comparison, the real modal indices without external magnetic bias are shown as well.
Fig. 3
Fig. 3 The transmittance spectra (in units of dB) obtained from numerical simulations for plasmons input from Port #1 (a) [Case 1 of Fig. 1(a)] and Port #2 (b) [Case 2 of Fig. 1(b)]. Meanwhile, the results for the case without magnetic field are plotted with dashed lines. The external magnetic field is B = 3T. The Hz field profile of 4th mode in Case 2 is shown in the inset.
Fig. 4
Fig. 4 The real modal indices on from Eq. (3) (solid lines) and Eq. (4) (dashed lines) are shown in (a). The crossover points in (a) and the resonant wavelengths from numerical simulations are illustrated using star markers and square markers, respectively.
Fig. 5
Fig. 5 The isolation ratio as functions of incident wavelength under different applied magnetic fields (a) and of applied magnetic field (b), ring radius (c) and chemical potential (d) under different incident wavelengths (λ = 8.2 μm and 8.5 μm).
Fig. 6
Fig. 6 The profiles of magnetic field component Hz of Case 1 and Case 2 under magnetic field B = 1T (a,b) and B = −1T (c,d) at λ = 8.5μm. The order of resonant mode is 6th. The red arrows illustrate the plasmons power flow direction.

Tables (1)

Tables Icon

Table 1 Performance comparisons of magnetically tunable plasmons isolator to literature values of graphene magnetic isolators

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ(ω)= 2 e 2 π 2 k B T×ln[ 2cosh( μ c 2 k B T ) ] j ω+j τ 1 ,
ε s ε [ ε xx i ε xy 0 i ε xy ε yy 0 0 0 ε zz ],
ε 1 k 2 + ε xx 2 ε xy 2 k 1 ε xx + β 1 ε xy + iσ ω ε 0 =0,
2πR=M λ res N eff ,(M=1,2,3,...),

Metrics