Abstract

Spatially tunable lasing emissions from dye-doped heavy chiral concentration liquid crystals (DD-HCCLCs) were investigated in this work. After thermal control of HCCLCs to below the phase transition temperature, the central wavelength of the photonic bandgap (PBG) was sensitively related to the working temperature, which could be tuned widely with the relatively small temperature variation owing to the phase transition from the cholesteric (Ch) to the smectic (Sm) phase. By means of Keating’s theory, the change in helical pitch, obtained from the transmission spectrum, versus temperature can be well fitted to derive the phase transition temperature of the smectic A phase. As the pump beam was focused on different locations of the DD-HCCLC cell with a one-dimensional temperature gradient, we demonstrated spatially tunable lasing peaks over one hundred nanometers from 556 nm to 671 nm. The experimental result regarding the spatially tunable lasing property shows that the DD-HCCLC laser could be a promising light source in display technology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient

C.-R. Lee, S.-H. Lin, H.-C. Yeh, and T.-D. Ji
Opt. Express 17(25) 22616-22623 (2009)

Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser

Ja-Hon Lin, Po-Yen Chen, and Jin-Jei Wu
Opt. Express 22(8) 9932-9941 (2014)

Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant

Jia-De Lin, Meng-Hung Hsieh, Guan-Jhong Wei, Ting-Shan Mo, Shuan-Yu Huang, and Chia-Rong Lee
Opt. Express 21(13) 15765-15776 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J.-H. Lin, P.-Y. Chen, and J.-J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22, 9932–9941 (2014).
    [Crossref] [PubMed]
  2. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
    [Crossref]
  3. J.-D. Lin, S.-Y. Huang, H.-S. Wang, S.-H. Lin, T.-S. Mo, C.-T. Horng, H.-C. Yeh, L.-J. Chen, H.-L. Lin, and C.-R. Lee, “Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell,” Opt. Express 22, 29479–29492 (2014).
    [Crossref]
  4. V. Kopp, B. Fan, H. Vithana, and A. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [Crossref]
  5. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
    [Crossref]
  6. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
    [Crossref]
  7. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
    [Crossref] [PubMed]
  8. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
    [Crossref]
  9. J.-H. Lin and Y.-L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4, 1555–1563 (2014).
    [Crossref]
  10. J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two dimensional confinement single core capillary,” IEEE Photon. J. 7, 1501809 (2015).
  11. Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
    [Crossref]
  12. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
    [Crossref]
  13. M.-Y. Jeong, H. Choi, and J. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
    [Crossref]
  14. S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Express 18, 9496–9503 (2010).
    [Crossref] [PubMed]
  15. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
    [Crossref]
  16. S.-Y. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
    [Crossref]
  17. P. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. 8, 315–326 (1969).
    [Crossref]
  18. H. Kitzerow and C. Bahr, Chirality in Liquid Crystals (Springer Science & Business Media, 2001).
    [Crossref]

2015 (1)

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two dimensional confinement single core capillary,” IEEE Photon. J. 7, 1501809 (2015).

2014 (3)

2010 (2)

2008 (2)

M.-Y. Jeong, H. Choi, and J. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

2006 (3)

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
[Crossref]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref] [PubMed]

2005 (1)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

2003 (1)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

2002 (1)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

2001 (1)

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

1998 (1)

1969 (1)

P. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. 8, 315–326 (1969).
[Crossref]

Bahr, C.

H. Kitzerow and C. Bahr, Chirality in Liquid Crystals (Springer Science & Business Media, 2001).
[Crossref]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Bunning, T. J.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Chen, C.-N.

S.-Y. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Chen, L.-J.

Chen, P.-Y.

Chen, Y.-H.

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two dimensional confinement single core capillary,” IEEE Photon. J. 7, 1501809 (2015).

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Choi, H.

M.-Y. Jeong, H. Choi, and J. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

Ciou, B.-Y.

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two dimensional confinement single core capillary,” IEEE Photon. J. 7, 1501809 (2015).

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Doyle, C.

Fan, B.

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Fuh, A. Y.-G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Ganzke, D.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Genack, A.

Gimenez, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Haase, W.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Horng, C.-T.

Hsiao, Y.-L.

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two dimensional confinement single core capillary,” IEEE Photon. J. 7, 1501809 (2015).

J.-H. Lin and Y.-L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4, 1555–1563 (2014).
[Crossref]

Huang, S.-Y.

Huang, Y.

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref] [PubMed]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
[Crossref]

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Jeong, M.-Y.

M.-Y. Jeong, H. Choi, and J. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

Kasano, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Keating, P.

P. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. 8, 315–326 (1969).
[Crossref]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Kitzerow, H.

H. Kitzerow and C. Bahr, Chirality in Liquid Crystals (Springer Science & Business Media, 2001).
[Crossref]

Koerner, H.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Kopp, V.

Lee, C.-R.

Lin, H.-L.

Lin, J.-D.

Lin, J.-H.

Lin, S.-H.

Lin, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Liu, J.-H.

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Mo, T.-S.

Munoz, A.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Natarajan, L. V.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Ozaki, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Pinol, M.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

Shyu, C.-Y.

Sutherland, R. L.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Taheri, B.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Tondiglia, V. P.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Tzeng, S.-Y.

S.-Y. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Tzeng, Y.

S.-Y. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Vaia, R. A.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Vithana, H.

Wang, H.-S.

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Wofford, J. M.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Wu, J.

M.-Y. Jeong, H. Choi, and J. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

Wu, J.-J.

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two dimensional confinement single core capillary,” IEEE Photon. J. 7, 1501809 (2015).

J.-H. Lin, P.-Y. Chen, and J.-J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22, 9932–9941 (2014).
[Crossref] [PubMed]

Wu, S.-T.

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref] [PubMed]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
[Crossref]

Yang, P.-C.

Yeh, H.-C.

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Yoshino, K.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Zhou, Y.

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref] [PubMed]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
[Crossref]

Adv. Mater. (2)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Appl. Phys. Lett. (5)

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
[Crossref]

M.-Y. Jeong, H. Choi, and J. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

IEEE Photon. J. (1)

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two dimensional confinement single core capillary,” IEEE Photon. J. 7, 1501809 (2015).

J. Appl. Phys. (1)

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Liq. Cryst. (1)

S.-Y. Tzeng, C.-N. Chen, and Y. Tzeng, “Thermal tuning band gap in cholesteric liquid crystals,” Liq. Cryst. 37, 1221–1224 (2010).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

P. Keating, “A theory of the cholesteric mesophase,” Mol. Cryst. Liq. Cryst. 8, 315–326 (1969).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Other (1)

H. Kitzerow and C. Bahr, Chirality in Liquid Crystals (Springer Science & Business Media, 2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic setup for band-edge lasing in DDCLC laser. Inset shows the photograph of the Q-switched Nd:YAG laser.
Fig. 2
Fig. 2 (a) The measurement of differential scanning calorimetry (DSC) from chiral NLCs with different concentrations of S811, and (b) the values of phase transition temperature (TS and TI) versus chiral concentrations.
Fig. 3
Fig. 3 (a) Temperature dependent shift of PBG from the Chiral NLCs with concentration of S811 about 42.5 wt% and about 25 wt% shown in the inset, and (b) variation of pitch as a function of the temperature from Chiral NLCs with different concentrations of S811 and the fitting curves from Keating‘s theory. The inset shows the pitches obtained from the lasing emission peaks and the theoretical estimated curves from Eq. (2).
Fig. 4
Fig. 4 (a) The photograph of HCCLCs mounted on the water cooling copper block with a one-dimensional temperature gradient, and the image of RPOM at different locations of HCCLCs to show (b) the oily streaks texture in the Ch phase with color change from blue to red, and (c) a phase transition from Ch, TGB to the SmA phase with the fan-shaped texture as the temperature decreases.
Fig. 5
Fig. 5 (a) Laser emission peaks obtained by shifting the focused pump beam on different locations of the DD-HCCLCs and the blue dash curve shows the fluorescent spectrum of PM597, and in-out characteristics of DD-HCCLCs with emission wavelength at 580 and 604 nm, respectively. (b)–(e) The different colors of the projected lasing beam on the screen.

Tables (1)

Tables Icon

Table 1 Fitted parameters obtained from temperature related pitch variation by the fitting of Keating‘s theory

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ c = n avg * P ,
P ( T ) = γ T A T ( 1 + β T T A ) 2 ,

Metrics