Abstract

A new type of diffusion-bonded Nd:YVO4/Nd:GdVO4 hetero-composite crystal is originally designed and applied to diode-end-pumped laser for achieving an efficient dual-comb picosecond operation with self-mode locking for the first time. As high as 1.1 W of the total average output power at 1063.18 and 1064.37 nm is generated under an incident pump power of 5.1 W. The corresponding mode-locked pulse width is 42 ps at a pulse repetition rate of 3.82 GHz. Through the optical beating between two carrier frequencies of each spectral component, a train of ultrashort pulses with sub-terahertz repetition rate is further generated with the effective duration of down to 1.6 ps.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser properties of continuous-grown Nd:GdVO4/GdVO4 and Nd:YVO4/YVO4 composite crystals under direct pumping

Xudong Li, Xin Yu, Fei Chen, Renpeng Yan, Junhua Yu, and Deying Chen
Opt. Express 17(15) 12869-12874 (2009)

Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium

Y. T. Chang, K. W. Su, H. L. Chang, and Y. F. Chen
Opt. Express 17(6) 4330-4335 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [Crossref] [PubMed]
  2. D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO₄ crystal,” Opt. Express 18(18), 18649–18654 (2010).
    [Crossref] [PubMed]
  3. A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
    [Crossref]
  4. Y. Zhao, S. Zhuang, X. Xu, J. Xu, H. Yu, Z. Wang, and X. Xu, “Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO,” Opt. Express 22(3), 2228–2235 (2014).
    [Crossref] [PubMed]
  5. G. Alombert-Goget, A. Brenier, Y. Guyot, A. Labruyère, B. Faure, and V. Couderc, “Thermally driven dual-frequency Q-switching of Nd:YGd2Sc2Al2GaO12 ceramic laser,” Opt. Express 22(9), 10792–10799 (2014).
    [Crossref] [PubMed]
  6. H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
    [Crossref]
  7. F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
    [Crossref]
  8. M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3(1), 9–18 (1997).
    [Crossref]
  9. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
    [Crossref] [PubMed]
  10. D. Kracht, R. Wilhelm, M. Frede, K. Dupré, and L. Ackermann, “407 W end-pumped multi-segmented Nd:YAG laser,” Opt. Express 13(25), 10140–10144 (2005).
    [Crossref] [PubMed]
  11. Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
    [Crossref] [PubMed]
  12. R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. 24(1–2), 393–399 (2003).
    [Crossref]
  13. J. Šulc, H. Jelinková, K. Nejezchleb, and V. Škoda, “Nd:YAG/V:YAG microchip laser operating at 1338 nm,” Laser Phys. Lett. 2(11), 519–524 (2005).
    [Crossref]
  14. B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
    [Crossref]
  15. S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
    [Crossref]
  16. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).
  17. Y. J. Huang, Y. S. Tzeng, H. H. Cho, and Y. F. Chen, “Effect of spatial hole burning on a dual-wavelength mode-locked laser based on compactly combined dual gain media,” Photon. Res. 2(6), 161–167 (2014).
    [Crossref]
  18. C. J. Flood, D. R. Walker, and H. M. van Driel, “Effect of spatial hole burning in a mode-locked diode end-pumped Nd:YAG laser,” Opt. Lett. 20(1), 58–60 (1995).
    [Crossref] [PubMed]
  19. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
    [Crossref]
  20. Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express 18(9), 9518–9524 (2010).
    [Crossref] [PubMed]
  21. Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
    [Crossref]
  22. A. Lagatsky, C. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12(17), 3928–3933 (2004).
    [Crossref] [PubMed]
  23. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
    [Crossref] [PubMed]
  24. H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
    [Crossref] [PubMed]
  25. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
    [Crossref] [PubMed]
  26. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, “Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking,” Opt. Express 20(16), 18230–18237 (2012).
    [Crossref] [PubMed]
  27. C. L. Wang and C. L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20(11), 1292–1294 (1995).
    [Crossref] [PubMed]

2015 (1)

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

2014 (5)

2013 (1)

2012 (1)

2011 (2)

B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
[Crossref]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

2010 (4)

2008 (3)

2007 (1)

2005 (2)

D. Kracht, R. Wilhelm, M. Frede, K. Dupré, and L. Ackermann, “407 W end-pumped multi-segmented Nd:YAG laser,” Opt. Express 13(25), 10140–10144 (2005).
[Crossref] [PubMed]

J. Šulc, H. Jelinková, K. Nejezchleb, and V. Škoda, “Nd:YAG/V:YAG microchip laser operating at 1338 nm,” Laser Phys. Lett. 2(11), 519–524 (2005).
[Crossref]

2004 (1)

2003 (1)

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. 24(1–2), 393–399 (2003).
[Crossref]

1997 (1)

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3(1), 9–18 (1997).
[Crossref]

1995 (4)

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

C. J. Flood, D. R. Walker, and H. M. van Driel, “Effect of spatial hole burning in a mode-locked diode end-pumped Nd:YAG laser,” Opt. Lett. 20(1), 58–60 (1995).
[Crossref] [PubMed]

C. L. Wang and C. L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20(11), 1292–1294 (1995).
[Crossref] [PubMed]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[Crossref]

Ackermann, L.

Agnesi, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
[Crossref]

Alombert-Goget, G.

Arcangeli, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
[Crossref]

Braun, B.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[Crossref]

Brenier, A.

Brown, C.

Burshtein, Z.

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. 24(1–2), 393–399 (2003).
[Crossref]

Chang, Y. T.

Chen, R. C. C.

Chen, Y.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Chen, Y. F.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

Y. J. Huang, Y. S. Tzeng, H. H. Cho, and Y. F. Chen, “Effect of spatial hole burning on a dual-wavelength mode-locked laser based on compactly combined dual gain media,” Photon. Res. 2(6), 161–167 (2014).
[Crossref]

Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
[Crossref] [PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, “Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking,” Opt. Express 20(16), 18230–18237 (2012).
[Crossref] [PubMed]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express 18(9), 9518–9524 (2010).
[Crossref] [PubMed]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[Crossref] [PubMed]

Chen, Z.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Chiang, P. Y.

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

Cho, H. H.

Couderc, V.

Du, N.

B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
[Crossref]

Dupré, K.

Faure, B.

Feldman, R.

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. 24(1–2), 393–399 (2003).
[Crossref]

Flood, C. J.

Frede, M.

Guyot, Y.

Hanson, F.

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

He, J.

B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
[Crossref]

Huang, H.

B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
[Crossref]

Huang, K. F.

Huang, W. C.

Huang, Y. J.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

Y. J. Huang, Y. S. Tzeng, H. H. Cho, and Y. F. Chen, “Effect of spatial hole burning on a dual-wavelength mode-locked laser based on compactly combined dual gain media,” Photon. Res. 2(6), 161–167 (2014).
[Crossref]

Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
[Crossref] [PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, “Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking,” Opt. Express 20(16), 18230–18237 (2012).
[Crossref] [PubMed]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express 18(9), 9518–9524 (2010).
[Crossref] [PubMed]

H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[Crossref] [PubMed]

Huang, Y. P.

Inaba, H.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3(1), 9–18 (1997).
[Crossref]

Jelinková, H.

J. Šulc, H. Jelinková, K. Nejezchleb, and V. Škoda, “Nd:YAG/V:YAG microchip laser operating at 1338 nm,” Laser Phys. Lett. 2(11), 519–524 (2005).
[Crossref]

Jia, Z.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
[Crossref]

Jiang, M. H.

Jiang, W.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Kaminskii, A. A.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Kärtner, F. X.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[Crossref]

Kasamatsu, T.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3(1), 9–18 (1997).
[Crossref]

Keller, U.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[Crossref]

Kracht, D.

Labruyère, A.

Lagatsky, A.

Li, A.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Li, D.

Li, Z.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Liang, H. C.

Lin, Y. C.

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

Liu, J.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Liu, S.

B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
[Crossref]

Luo, H.

Meng, J.

Nejezchleb, K.

J. Šulc, H. Jelinková, K. Nejezchleb, and V. Škoda, “Nd:YAG/V:YAG microchip laser operating at 1338 nm,” Laser Phys. Lett. 2(11), 519–524 (2005).
[Crossref]

Pan, C. L.

Pirzio, F.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
[Crossref]

Qian, L. J.

Reali, G.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
[Crossref]

Shimony, Y.

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. 24(1–2), 393–399 (2003).
[Crossref]

Sibbett, W.

Škoda, V.

J. Šulc, H. Jelinková, K. Nejezchleb, and V. Škoda, “Nd:YAG/V:YAG microchip laser operating at 1338 nm,” Laser Phys. Lett. 2(11), 519–524 (2005).
[Crossref]

Su, K. W.

Šulc, J.

J. Šulc, H. Jelinková, K. Nejezchleb, and V. Škoda, “Nd:YAG/V:YAG microchip laser operating at 1338 nm,” Laser Phys. Lett. 2(11), 519–524 (2005).
[Crossref]

Taguchi, N.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3(1), 9–18 (1997).
[Crossref]

Tang, C. Y.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, “Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking,” Opt. Express 20(16), 18230–18237 (2012).
[Crossref] [PubMed]

Tang, D. Y.

Tao, X.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
[Crossref]

Tao, X. T.

Tonelli, M.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
[Crossref]

Tsunekane, M.

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3(1), 9–18 (1997).
[Crossref]

Tzeng, Y. S.

Ueda, K.

van Driel, H. M.

Walker, D. R.

Wang, C. L.

Wang, J.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Wang, J. Y.

Wang, S.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Wang, Z.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Y. Zhao, S. Zhuang, X. Xu, J. Xu, H. Yu, Z. Wang, and X. Xu, “Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO,” Opt. Express 22(3), 2228–2235 (2014).
[Crossref] [PubMed]

Weingarten, K. J.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[Crossref]

Wilhelm, R.

Wu, F.

Xia, C.

Xie, G. Q.

Xu, J.

Xu, X.

Yang, J.

B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
[Crossref]

Yin, H.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Yu, H.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Y. Zhao, S. Zhuang, X. Xu, J. Xu, H. Yu, Z. Wang, and X. Xu, “Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO,” Opt. Express 22(3), 2228–2235 (2014).
[Crossref] [PubMed]

Yu, H. H.

Zhang, B.

B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
[Crossref]

Zhang, H.

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Zhang, H. J.

Zhang, Q.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Zhao, L. M.

Zhao, Y.

Zhou, D.

Zhu, S.

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Zhuang, S.

Appl. Phys. B (2)

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[Crossref]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

Appl. Phys. Lett. (1)

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3(1), 9–18 (1997).
[Crossref]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

IEEE Photonics Technol. Lett. (1)

B. Zhang, N. Du, J. He, S. Liu, J. Yang, and H. Huang, “355-nm UV generation by intracavity frequency tripled passively Q-switched Nd:YAG/Cr4+:YAG laser,” IEEE Photonics Technol. Lett. 23(10), 612–614 (2011).
[Crossref]

Laser Photonics Rev. (1)

H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, and J. Wang, “Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer,” Laser Photonics Rev. 8(6), 847–864 (2014).
[Crossref]

Laser Phys. Lett. (1)

J. Šulc, H. Jelinková, K. Nejezchleb, and V. Škoda, “Nd:YAG/V:YAG microchip laser operating at 1338 nm,” Laser Phys. Lett. 2(11), 519–524 (2005).
[Crossref]

Opt. Express (10)

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

D. Kracht, R. Wilhelm, M. Frede, K. Dupré, and L. Ackermann, “407 W end-pumped multi-segmented Nd:YAG laser,” Opt. Express 13(25), 10140–10144 (2005).
[Crossref] [PubMed]

Y. J. Huang and Y. F. Chen, “High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate,” Opt. Express 21(13), 16063–16068 (2013).
[Crossref] [PubMed]

D. Li, X. Xu, J. Meng, D. Zhou, C. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO₄ crystal,” Opt. Express 18(18), 18649–18654 (2010).
[Crossref] [PubMed]

Y. Zhao, S. Zhuang, X. Xu, J. Xu, H. Yu, Z. Wang, and X. Xu, “Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO,” Opt. Express 22(3), 2228–2235 (2014).
[Crossref] [PubMed]

G. Alombert-Goget, A. Brenier, Y. Guyot, A. Labruyère, B. Faure, and V. Couderc, “Thermally driven dual-frequency Q-switching of Nd:YGd2Sc2Al2GaO12 ceramic laser,” Opt. Express 22(9), 10792–10799 (2014).
[Crossref] [PubMed]

A. Lagatsky, C. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12(17), 3928–3933 (2004).
[Crossref] [PubMed]

Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express 18(9), 9518–9524 (2010).
[Crossref] [PubMed]

H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[Crossref] [PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, “Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking,” Opt. Express 20(16), 18230–18237 (2012).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

S. Zhu, Z. Chen, Z. Chen, W. Jiang, S. Wang, Q. Zhang, H. Yin, Z. Li, A. Li, and Y. Chen, “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal,” Opt. Laser Technol. 63, 24–28 (2014).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (2)

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength Nd:GAGG picosecond laser,” Opt. Mater. 32(9), 1130–1133 (2010).
[Crossref]

R. Feldman, Y. Shimony, and Z. Burshtein, “Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser,” Opt. Mater. 24(1–2), 393–399 (2003).
[Crossref]

Photon. Res. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental setup of the diode-end-pumped dual-comb self-mode-locked Nd:YVO4/Nd:GdVO4 laser; Schematic configurations for the (b) diffusion-bonded crystal (Nd:YVO4/Nd:GdVO4 hetero-composite crystal), and (c) the dual gain media structure.
Fig. 2
Fig. 2 Fluorescent spectra of the Nd:YVO4, Nd:GdVO4, and diffusion-bonded Nd:YVO4/Nd:GdVO4 crystals for the (a) π- and (b) σ-polarization components.
Fig. 3
Fig. 3 (a) Average output powers versus the incident pump power for the diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal and the dual gain media structure; (b) Optical spectrum for the dual-comb Nd:YVO4/Nd:GdVO4 laser.
Fig. 4
Fig. 4 Oscilloscope traces with the time span of (a) 200 ns and (b) 2 ns, RF spectra with the span of (c) 20 GHz and (d) 100 MHz, and autocorrelation traces with the time interval of (e) 210 ps and (f) 9 ps, for the dual-comb Nd:YVO4/Nd:GdVO4 laser.

Metrics