Abstract

The low quality factor (Q-factor) of the localized surface plasmon resonance (LSPR) is a significant barrier for further progress of LSPR-based devices. Therefore, we investigate the effect that materials typically used in the nano-fabrication process have on the LSPR wavelength and Q-factor in order to find avenues of improvement. Specifically we investigate the influence of charge dissipation and adhesion layers upon the LSPR of linearly polarizing nano-antennas and show that a simple quasi-static model can be used to describe such systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas

Hongwei Jia, Fan Yang, Ying Zhong, and Haitao Liu
Photon. Res. 4(6) 293-305 (2016)

Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensors

Kyung Min Byun, Soon Joon Yoon, and Donghyun Kim
Appl. Opt. 47(31) 5886-5892 (2008)

Differential phase-detecting localized surface plasmon resonance sensor with self-assembly gold nano-islands

Guangyu Qiu, Siu Pang Ng, and Chi Man Lawrence Wu
Opt. Lett. 40(9) 1924-1927 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  2. L. C. Estrada, P. F. Aramendía, and O. E. Martínez, “10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas,” Opt. Express 16, 20597–20602 (2008).
    [Crossref] [PubMed]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
    [Crossref]
  4. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
    [Crossref] [PubMed]
  5. T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011).
    [Crossref]
  6. M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
    [Crossref] [PubMed]
  7. Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
    [Crossref] [PubMed]
  8. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  9. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957, 1981).
  10. L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
    [Crossref]
  11. M. Gluodenis and C. A. Foss, “The effect of mutual orientation on the spectra of metal nanoparticle rod–rod and rod–sphere pairs,” J. Phys. Chem. B 106, 9484–9489 (2002).
    [Crossref]
  12. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
    [Crossref] [PubMed]
  13. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref] [PubMed]
  14. G. Lilley and K. Unterrainer, “Rotating polarization spectroscopy for single nano-antenna characterization,” Opt. Express 21, 30903–30910 (2013).
    [Crossref]
  15. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, vol. 1 (Iet, 1997).
  16. M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
    [Crossref]
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  18. G. E. Zaikov and Yu. A. Mikheev, Kinetics and Mechanisms of Chemical Reactions (Nova Publishers, 2005).
  19. D. A. Landman, R. Roussel-Dupre, and G. Tanigawa, “On the statistical uncertainties associated with line profile fitting,” Astrophys. J. 261, 732–735 (1982).
    [Crossref]
  20. A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
    [Crossref]
  21. J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. ii,” Philos. Trans. R. Soc. London, Ser. A, Containing Papers of a Mathematical or Physical Character 205, pp. 237–288 (1906).
    [Crossref]
  22. M. Scheller, C. Jansen, and M. Koch, Applications of Effective Medium Theories in the Terahertz Regime (INTECH Open Access Publisher, 2010).
  23. R. F. Potter, Handbook of Optical Constants of Solids, vol. 2 (Academic press, 1997).
  24. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
    [Crossref]
  25. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
    [Crossref]

2014 (1)

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
[Crossref]

2013 (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

G. Lilley and K. Unterrainer, “Rotating polarization spectroscopy for single nano-antenna characterization,” Opt. Express 21, 30903–30910 (2013).
[Crossref]

2012 (1)

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

2011 (2)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011).
[Crossref]

2010 (2)

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

2009 (2)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

2002 (1)

M. Gluodenis and C. A. Foss, “The effect of mutual orientation on the spectra of metal nanoparticle rod–rod and rod–sphere pairs,” J. Phys. Chem. B 106, 9484–9489 (2002).
[Crossref]

1999 (2)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
[Crossref]

1982 (1)

D. A. Landman, R. Roussel-Dupre, and G. Tanigawa, “On the statistical uncertainties associated with line profile fitting,” Astrophys. J. 261, 732–735 (1982).
[Crossref]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

1906 (1)

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. ii,” Philos. Trans. R. Soc. London, Ser. A, Containing Papers of a Mathematical or Physical Character 205, pp. 237–288 (1906).
[Crossref]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Aramendía, P. F.

Atkinson, P.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Bai, M.

M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
[Crossref]

Benyoucef, M.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Chang, W.-S.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chun, H.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011).
[Crossref]

Chung, T.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011).
[Crossref]

Dan, Oron

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Estrada, L. C.

Foss, C. A.

M. Gluodenis and C. A. Foss, “The effect of mutual orientation on the spectra of metal nanoparticle rod–rod and rod–sphere pairs,” J. Phys. Chem. B 106, 9484–9489 (2002).
[Crossref]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. ii,” Philos. Trans. R. Soc. London, Ser. A, Containing Papers of a Mathematical or Physical Character 205, pp. 237–288 (1906).
[Crossref]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Gluodenis, M.

M. Gluodenis and C. A. Foss, “The effect of mutual orientation on the spectra of metal nanoparticle rod–rod and rod–sphere pairs,” J. Phys. Chem. B 106, 9484–9489 (2002).
[Crossref]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Hervé, Rigneault

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

Hohenau, A.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
[Crossref]

Hohenester, U.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
[Crossref]

Jakopic, G.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
[Crossref]

Jansen, C.

M. Scheller, C. Jansen, and M. Koch, Applications of Effective Medium Theories in the Terahertz Regime (INTECH Open Access Publisher, 2010).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Khanal, B. P.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Koch, M.

M. Scheller, C. Jansen, and M. Koch, Applications of Effective Medium Theories in the Terahertz Regime (INTECH Open Access Publisher, 2010).

Krenn, J. R.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
[Crossref]

Kreuzer, Mark P.

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

Landman, D. A.

D. A. Landman, R. Roussel-Dupre, and G. Tanigawa, “On the statistical uncertainties associated with line profile fitting,” Astrophys. J. 261, 732–735 (1982).
[Crossref]

Lee, B.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011).
[Crossref]

Lee, S.-Y.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011).
[Crossref]

Lilley, G.

Lindfors, K.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Link, S.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Lippitz, M.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Martínez, O. E.

McCord, M. A.

M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
[Crossref]

Meisburger, D.

M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Mikheev, Yu. A.

G. E. Zaikov and Yu. A. Mikheev, Kinetics and Mechanisms of Chemical Reactions (Nova Publishers, 2005).

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Pease, R. F. W.

M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
[Crossref]

Pfeiffer, M.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Pickard, D. S.

M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
[Crossref]

Potter, R. F.

R. F. Potter, Handbook of Optical Constants of Solids, vol. 2 (Academic press, 1997).

Rai-Choudhury, P.

P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, vol. 1 (Iet, 1997).

Rastelli, A.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Romain, Quidant

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

Roussel-Dupre, R.

D. A. Landman, R. Roussel-Dupre, and G. Tanigawa, “On the statistical uncertainties associated with line profile fitting,” Astrophys. J. 261, 732–735 (1982).
[Crossref]

Scheller, M.

M. Scheller, C. Jansen, and M. Koch, Applications of Effective Medium Theories in the Terahertz Regime (INTECH Open Access Publisher, 2010).

Schmidt, O. G.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Slaughter, L. S.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Song, E. Y.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011).
[Crossref]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Stella, Itzhakov

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

Swanglap, P.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Tanasa, C.

M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
[Crossref]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Tanigawa, G.

D. A. Landman, R. Roussel-Dupre, and G. Tanigawa, “On the statistical uncertainties associated with line profile fitting,” Astrophys. J. 261, 732–735 (1982).
[Crossref]

Tcherniak, A.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Tinguely, J.-C.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
[Crossref]

Trügler, A.

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
[Crossref]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Unterrainer, K.

Ureña, Esteban Bermúdez

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957, 1981).

Wenger, Jérôme

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

Wolpert, C.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Zaikov, G. E.

G. E. Zaikov and Yu. A. Mikheev, Kinetics and Mechanisms of Chemical Reactions (Nova Publishers, 2005).

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Zubarev, E. R.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

Adv. Mater. (2)

Esteban Bermúdez Ureña, Mark P. Kreuzer, Itzhakov Stella, Rigneault Hervé, Quidant Romain, Oron Dan, and Jérôme Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Astrophys. J. (1)

D. A. Landman, R. Roussel-Dupre, and G. Tanigawa, “On the statistical uncertainties associated with line profile fitting,” Astrophys. J. 261, 732–735 (1982).
[Crossref]

J. Phys. Chem. B (1)

M. Gluodenis and C. A. Foss, “The effect of mutual orientation on the spectra of metal nanoparticle rod–rod and rod–sphere pairs,” J. Phys. Chem. B 106, 9484–9489 (2002).
[Crossref]

J. Phys. Chem. C (1)

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114, 4934–4938 (2010).
[Crossref]

J. Vac. Sci. Technol., B (1)

M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, “Charging and discharging of electron beam resist films,” J. Vac. Sci. Technol., B 17, 2893–2896 (1999).
[Crossref]

Nano Lett. (1)

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref] [PubMed]

Nature (1)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999).
[Crossref]

Opt. Express (2)

Philos. Trans. R. Soc. London, Ser. A, Containing Papers of a Mathematical or Physical Character (1)

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. ii,” Philos. Trans. R. Soc. London, Ser. A, Containing Papers of a Mathematical or Physical Character 205, pp. 237–288 (1906).
[Crossref]

Phys. Rev. B (3)

A. Trügler, J.-C. Tinguely, G. Jakopic, U. Hohenester, J. R. Krenn, and A. Hohenau, “Near-field and SERS enhancement from rough plasmonic nanoparticles,” Phys. Rev. B 89, 165409 (2014).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Sensors (1)

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907–10929 (2011).
[Crossref]

Other (5)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957, 1981).

G. E. Zaikov and Yu. A. Mikheev, Kinetics and Mechanisms of Chemical Reactions (Nova Publishers, 2005).

P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, vol. 1 (Iet, 1997).

M. Scheller, C. Jansen, and M. Koch, Applications of Effective Medium Theories in the Terahertz Regime (INTECH Open Access Publisher, 2010).

R. F. Potter, Handbook of Optical Constants of Solids, vol. 2 (Academic press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic of the RoPoSpec setup is shown in (a). The measurement principle relies on placing the individual signal components at different electronic frequencies that are subsequently measured by a lock-in amplifier. The rotating half-wave plate (RHWP) rotates at a frequency ω0 which rotates the polarization angle at ω1 = 4ω0 where the extinction signal Iant is measured. The optical chopper operates at ω2 at which the laser intensity Iref is determined. From these signals, the extinction cross-section of the nano-antennas in the beam’s focus (dFWHM = 1.4 μm) is calculated [14]. The corresponding electronic spectrum, which is measured with the silicon photodiode (Si PD), can be seen in (b). An AFM scan of a typical Au antenna is displayed in (c). Panel (d) shows the calculated resonance Q-factor of prolate ellipsoids in the quasi-static approximation plotted over the corresponding LSPR wavelength λ0 for Au and Ag. The material data were sourced from Johnson and Christy [17]. The Figs. (e) to (h) show the different sample geometries used in the measurements. Panel (f) is representative for the five samples with Ti layer thicknesses varying from 1 to 5 nm. The Au layer is kept constant at 40 nm thickness and the Ge layer is kept at 5 nm. The antennas are designed to be 30 nm wide with varying arm lengths and a constant gap of 20 nm. Arrays of 8 × 8 antennas with a 500 nm pitch were used in all experiments.

Fig. 2
Fig. 2

A schematic of the fabrication process used for Au and Ag antennas (a). The main difference between Au and Ag antenna fabrication is depicted in step 3 where the Ge layer must be removed prior to metalization. The resulting metal structure contains 9 antenna arrays with varying arm lengths centered in 10 μm allignment apertures (b). SEM images of typical antenna arrays are shown in panels (c) and (d) while panel (e) shows an atomic force microscope scan of a 1×1 μm field.

Fig. 3
Fig. 3

(a) and (c) show the change of the LSPR peak wavelength for increasing antenna arm lengths while (b) and (d) show the Q-factor for the corresponding LSPR peak wavelength. (a) and (b) illustrate the shift in LSPR properties when the Ge discharge layer surrounding the Au antennas is removed. The green curve (Au, Ge) represents Fig. 1(e) and the blue curve (Au) represents Fig. 1(g). (c) and (d) show the LSPR behavior for Au on an uninterrupted Ge layer (Au/Ge, fig. 1(f)) and the Au/Ge sample stripped of Ge. Also pure Ag and Au antennas are shown. The error bars in the LSPR over antenna length L curves represent the standard deviation of the measured LSPR peak wavelength over several antenna samples. The error bars in the Q-factor curves represent the fitting errors’ cumulative propagated contributions to the Q-factor.

Fig. 4
Fig. 4

(a) shows the calculated average Q-factor of the LSPR for Ti adhesion layer thicknesses of 1 to 5 nm and (b) shows the corresponding calculated LSPR peak wavelength for increasing antenna arm lengths. A clear deterioration of the Q-factor is observed for increasing amounts of Ti while the LSPR peak wavelengths barely change. The error bars show the standard deviation in Q-factor values over the observed spectral window of 850 nm to 990 nm. Pannels (c) and (d) show the measurements corresponding to the calculated curves in panels (a) and (b). The calculations are carried out with the same model used to produce Fig. 5(c) and 5(d).

Fig. 5
Fig. 5

The individual dielectric functions of Au and Ge are plotted in (a) and (b). The Maxwell Garnett approximation of 40 nm of Au on 5 nm of Ge is illustrated in blue (Au/Ge). (c) and (d) show simulation results for antennas of shape and size similar to the ones measured to produce Fig. 3.

Tables (1)

Tables Icon

Table 1 Listing of the antenna material, adhesion layer (AL), dissipation layer (DL) and environment configuration of all samples used in this work.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S x = C x Δ λ m Δ λ SN 0 1 .
ε eff , m = ε Au 2 δ ( ε Ge ε Au ) + ε Ge + 2 ε Au δ ( ε Au ε Ge ) + ε Ge + 2 ε Au
ε eff , env = a + b ε glass + c ε Ge

Metrics