Abstract

Eu3+ doped tin dioxide (SnO2) thin films are deposited by the sol-gel-dip-coating process on top of GaAs films, which is deposited by resistive evaporation on glass substrate. This heterojunction assembly leads to interesting luminescent emission from the rare-earth ion, unlike the SnO2 deposition directly on a glass substrate, where the Eu3+ transitions are absent. In the heterojunction, the Eu3+ transitions are clearly identified and are similar to emission from samples in the form of pressed powder (pellets), thermally treated at much higher temperatures. However, in the form of films, the Eu emission comes along a broad band, located at higher energy compared to Eu3+ transitions. This broad band is blue shifted as the thermal annealing temperature as well as the crystallite size increase. Although the size of nanocrystallites points toward quantum confinement, another cause of the detected broad band is more feasible: the electron transfer between oxygen vacancies, originated from the disorder in the material, and trivalent rare-earth ions, which present acceptor-like character in this matrix. This electron transfer may relax for higher temperatures in the case of pellets, and the broad band is eliminated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Site symmetry and host sensitization-dependence of Eu3+ real time luminescence in tin dioxide nanoparticles

Concepción Cascales, Rolindes Balda, Sara García-Revilla, Luis Lezama, Macarena Barredo-Zuriarrain, and Joaquín Fernández
Opt. Express 26(13) 16155-16170 (2018)

Temperature dependence of photoluminescence in SrS:Eu2+, Sm3+ thin films

Z. Hua, L. Salamanca-Riba, M. Wuttig, and P. K. Soltani
J. Opt. Soc. Am. B 10(8) 1464-1469 (1993)

New synthetic strategies for luminescent YVO4:Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) with mesoporous cell-like nanostructure

Liusai Yang, Siyan Peng, Minglei Zhao, and Leshu Yu
Opt. Mater. Express 8(12) 3805-3819 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
    [Crossref] [PubMed]
  2. M. Ishii, S. Komuro, and T. Morikawa, “Study on atomic coordination around Er doped into anatase and rutile TiO2:Er-O clustering dependent on the host crystal phase,” J. Appl. Phys. 94(6), 3823 (2003).
    [Crossref]
  3. S. C. Ray, M. K. Karanjai, and D. Dasgupta, “Tin dioxide based transparent semiconducting films deposited by the dip-coating technique,” Surf. Coat. Tech. 102(1), 73–80 (1998).
    [Crossref]
  4. E. Dien, J. M. Laurent, and A. Smith, “Comparison of optical and electrical characteristics of SnO2-based thin films deposited by pyrosol from different tin precursors,” J. Eur. Ceram. Soc. 19(6–7), 787–789 (1999).
    [Crossref]
  5. H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
    [Crossref]
  6. E. A. Morais, L. V. A. Scalvi, A. Tabata, J. B. B. De Oliveira, and S. J. L. Ribeiro, “Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel,” J. Mater. Sci. 43(1), 345–349 (2008).
    [Crossref]
  7. T. W. Kim, D. U. Lee, and Y. S. Yoon, “Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices,” J. Appl. Phys. 88(6), 3759–3761 (2000).
    [Crossref]
  8. A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals and Quantum Dots,” Science 271(5251), 933–937 (1996).
    [Crossref]
  9. R. S. D. Bella and K. Navaneethakrishnan, “Donor binding energies and spin–orbit coupling in a spherical quantum dot,” Solid State Commun. 130(11), 773–776 (2004).
    [Crossref]
  10. G. Ledoux, J. Gong, F. Huisken, O. Guilois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
    [Crossref]
  11. T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
    [Crossref]
  12. D. H. Park, Y. H. Cho, Y. R. Do, and B. T. Ahn, “Characterization of Eu-Doped SnO2 Thin Films Deposited by Radio-Frequency Sputtering for a Transparent Conductive Phosphor Layer,” J. Electrochem. Soc. 153(4), H63–H67 (2006).
    [Crossref]
  13. H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, and H. Zhang, “Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworks For Luminescent Thin Films,” Adv. Mater. 22(37), 4190–4192 (2010).
    [Crossref] [PubMed]
  14. C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
    [Crossref]
  15. J. W. E. Wiegman and E. van der Kolk, “Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modeling,” Sol. Energy Mater. Sol. Cells 103, 41–47 (2012).
    [Crossref]
  16. M. Yu, J. Lin, J. Fu, H. J. Zhang, and Y. C. Han, “Sol–gel synthesis and photoluminescent properties of LaPO4:A (A - Eu3+, Ce3+, Tb3+) nanocrystalline thin films,” J. Mater. Chem. 13(6), 1413–1419 (2003).
    [Crossref]
  17. K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
    [Crossref]
  18. T. F. Pineiz, L. V. A. Scalvi, M. J. Saeki, and E. A. Morais, “Interface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol–Gel Dip-Coating and Resistive Evaporation,” J. Electron. Mater. 39(8), 1170–1176 (2010).
    [Crossref]
  19. T. F. Pineiz, E. A. de Morais, L. V. A. Scalvi, and C. F. Bueno, “Interface formation of nanostructured heterojunction SnO2:Eu/GaAs and electronic transport properties,” Appl. Surf. Sci. 267, 200–205 (2013).
    [Crossref]
  20. B. D. Cullity and R. Stock, Elements of X-Ray Diffraction (Prentice Hall, 2001).
  21. Y. Wang, J. Ma, F. Si, X. Yu, and H. Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering,” J. Lumin. 114(1), 71–76 (2005).
    [Crossref]
  22. V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel,” J. Eur. Ceram. Soc. 27(13-15), 4265–4628 (2007).
    [Crossref]
  23. V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy,” J. Phys. Chem. C 114(45), 19206–19213 (2010).
    [Crossref]
  24. E. A. Morais, L. V. A. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route,” J. Non-Cryst. Solids 354(42-44), 4840–4845 (2008).
    [Crossref]
  25. G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
    [Crossref]
  26. S. J. L. Ribeiro, S. H. Pulcinelli, and C. V. Santilli, “SnO2:Eu nanocrystallites in SnO2 monolithic xerogels,” Chem. Phys. Lett. 190(1–2), 64–66 (1992).
    [Crossref]
  27. E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
    [Crossref]
  28. T. Matsuoka, T. Tohda, and T. Nitta, “The Low-Energy-Electron (LEE) Excitation of SnO2:Eu Powder Phosphor; Fundamental Characteristics,” J. Electrochem. Soc. 130(2), 417–423 (1983).
    [Crossref]
  29. R. E. Marotti, P. Giorgi, G. Machado, and E. A. Dalchiele, “Crystallite size dependence of bandgap energy for electrodeposited ZnO grown at different temperatures,” Sol. Energy Mater. Sol. Cells 90(15), 2356–2361 (2006).
    [Crossref]

2013 (2)

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

T. F. Pineiz, E. A. de Morais, L. V. A. Scalvi, and C. F. Bueno, “Interface formation of nanostructured heterojunction SnO2:Eu/GaAs and electronic transport properties,” Appl. Surf. Sci. 267, 200–205 (2013).
[Crossref]

2012 (1)

J. W. E. Wiegman and E. van der Kolk, “Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modeling,” Sol. Energy Mater. Sol. Cells 103, 41–47 (2012).
[Crossref]

2010 (3)

H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, and H. Zhang, “Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworks For Luminescent Thin Films,” Adv. Mater. 22(37), 4190–4192 (2010).
[Crossref] [PubMed]

T. F. Pineiz, L. V. A. Scalvi, M. J. Saeki, and E. A. Morais, “Interface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol–Gel Dip-Coating and Resistive Evaporation,” J. Electron. Mater. 39(8), 1170–1176 (2010).
[Crossref]

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy,” J. Phys. Chem. C 114(45), 19206–19213 (2010).
[Crossref]

2008 (2)

E. A. Morais, L. V. A. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route,” J. Non-Cryst. Solids 354(42-44), 4840–4845 (2008).
[Crossref]

E. A. Morais, L. V. A. Scalvi, A. Tabata, J. B. B. De Oliveira, and S. J. L. Ribeiro, “Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel,” J. Mater. Sci. 43(1), 345–349 (2008).
[Crossref]

2007 (1)

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel,” J. Eur. Ceram. Soc. 27(13-15), 4265–4628 (2007).
[Crossref]

2006 (2)

R. E. Marotti, P. Giorgi, G. Machado, and E. A. Dalchiele, “Crystallite size dependence of bandgap energy for electrodeposited ZnO grown at different temperatures,” Sol. Energy Mater. Sol. Cells 90(15), 2356–2361 (2006).
[Crossref]

D. H. Park, Y. H. Cho, Y. R. Do, and B. T. Ahn, “Characterization of Eu-Doped SnO2 Thin Films Deposited by Radio-Frequency Sputtering for a Transparent Conductive Phosphor Layer,” J. Electrochem. Soc. 153(4), H63–H67 (2006).
[Crossref]

2005 (1)

Y. Wang, J. Ma, F. Si, X. Yu, and H. Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering,” J. Lumin. 114(1), 71–76 (2005).
[Crossref]

2004 (2)

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

R. S. D. Bella and K. Navaneethakrishnan, “Donor binding energies and spin–orbit coupling in a spherical quantum dot,” Solid State Commun. 130(11), 773–776 (2004).
[Crossref]

2003 (4)

M. Ishii, S. Komuro, and T. Morikawa, “Study on atomic coordination around Er doped into anatase and rutile TiO2:Er-O clustering dependent on the host crystal phase,” J. Appl. Phys. 94(6), 3823 (2003).
[Crossref]

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

M. Yu, J. Lin, J. Fu, H. J. Zhang, and Y. C. Han, “Sol–gel synthesis and photoluminescent properties of LaPO4:A (A - Eu3+, Ce3+, Tb3+) nanocrystalline thin films,” J. Mater. Chem. 13(6), 1413–1419 (2003).
[Crossref]

K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
[Crossref]

2002 (2)

G. Ledoux, J. Gong, F. Huisken, O. Guilois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[Crossref]

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

2000 (1)

T. W. Kim, D. U. Lee, and Y. S. Yoon, “Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices,” J. Appl. Phys. 88(6), 3759–3761 (2000).
[Crossref]

1999 (1)

E. Dien, J. M. Laurent, and A. Smith, “Comparison of optical and electrical characteristics of SnO2-based thin films deposited by pyrosol from different tin precursors,” J. Eur. Ceram. Soc. 19(6–7), 787–789 (1999).
[Crossref]

1998 (1)

S. C. Ray, M. K. Karanjai, and D. Dasgupta, “Tin dioxide based transparent semiconducting films deposited by the dip-coating technique,” Surf. Coat. Tech. 102(1), 73–80 (1998).
[Crossref]

1997 (1)

G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
[Crossref]

1996 (1)

A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals and Quantum Dots,” Science 271(5251), 933–937 (1996).
[Crossref]

1994 (1)

S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[Crossref] [PubMed]

1992 (1)

S. J. L. Ribeiro, S. H. Pulcinelli, and C. V. Santilli, “SnO2:Eu nanocrystallites in SnO2 monolithic xerogels,” Chem. Phys. Lett. 190(1–2), 64–66 (1992).
[Crossref]

1983 (1)

T. Matsuoka, T. Tohda, and T. Nitta, “The Low-Energy-Electron (LEE) Excitation of SnO2:Eu Powder Phosphor; Fundamental Characteristics,” J. Electrochem. Soc. 130(2), 417–423 (1983).
[Crossref]

Ahn, B. T.

D. H. Park, Y. H. Cho, Y. R. Do, and B. T. Ahn, “Characterization of Eu-Doped SnO2 Thin Films Deposited by Radio-Frequency Sputtering for a Transparent Conductive Phosphor Layer,” J. Electrochem. Soc. 153(4), H63–H67 (2006).
[Crossref]

Alivisatos, A. P.

A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals and Quantum Dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Aymonier, C.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Bartl, M. H.

K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
[Crossref]

Bazan, G. C.

K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
[Crossref]

Bella, R. S. D.

R. S. D. Bella and K. Navaneethakrishnan, “Donor binding energies and spin–orbit coupling in a spherical quantum dot,” Solid State Commun. 130(11), 773–776 (2004).
[Crossref]

Boissière, C.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Briois, V.

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy,” J. Phys. Chem. C 114(45), 19206–19213 (2010).
[Crossref]

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel,” J. Eur. Ceram. Soc. 27(13-15), 4265–4628 (2007).
[Crossref]

G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
[Crossref]

Brito, G. E. S.

G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
[Crossref]

Bueno, C. F.

T. F. Pineiz, E. A. de Morais, L. V. A. Scalvi, and C. F. Bueno, “Interface formation of nanostructured heterojunction SnO2:Eu/GaAs and electronic transport properties,” Appl. Surf. Sci. 267, 200–205 (2013).
[Crossref]

Cardinal, T.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Cavalheiro, A. A.

E. A. Morais, L. V. A. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route,” J. Non-Cryst. Solids 354(42-44), 4840–4845 (2008).
[Crossref]

Chen, B.

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

Cho, Y. H.

D. H. Park, Y. H. Cho, Y. R. Do, and B. T. Ahn, “Characterization of Eu-Doped SnO2 Thin Films Deposited by Radio-Frequency Sputtering for a Transparent Conductive Phosphor Layer,” J. Electrochem. Soc. 153(4), H63–H67 (2006).
[Crossref]

Choi, C.-J.

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

Coffa, S.

S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[Crossref] [PubMed]

Dalchiele, E. A.

R. E. Marotti, P. Giorgi, G. Machado, and E. A. Dalchiele, “Crystallite size dependence of bandgap energy for electrodeposited ZnO grown at different temperatures,” Sol. Energy Mater. Sol. Cells 90(15), 2356–2361 (2006).
[Crossref]

Dasgupta, D.

S. C. Ray, M. K. Karanjai, and D. Dasgupta, “Tin dioxide based transparent semiconducting films deposited by the dip-coating technique,” Surf. Coat. Tech. 102(1), 73–80 (1998).
[Crossref]

de Morais, E. A.

T. F. Pineiz, E. A. de Morais, L. V. A. Scalvi, and C. F. Bueno, “Interface formation of nanostructured heterojunction SnO2:Eu/GaAs and electronic transport properties,” Appl. Surf. Sci. 267, 200–205 (2013).
[Crossref]

De Oliveira, J. B. B.

E. A. Morais, L. V. A. Scalvi, A. Tabata, J. B. B. De Oliveira, and S. J. L. Ribeiro, “Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel,” J. Mater. Sci. 43(1), 345–349 (2008).
[Crossref]

Dexpert-Ghys, J.

G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
[Crossref]

Dien, E.

E. Dien, J. M. Laurent, and A. Smith, “Comparison of optical and electrical characteristics of SnO2-based thin films deposited by pyrosol from different tin precursors,” J. Eur. Ceram. Soc. 19(6–7), 787–789 (1999).
[Crossref]

Do, Y. R.

D. H. Park, Y. H. Cho, Y. R. Do, and B. T. Ahn, “Characterization of Eu-Doped SnO2 Thin Films Deposited by Radio-Frequency Sputtering for a Transparent Conductive Phosphor Layer,” J. Electrochem. Soc. 153(4), H63–H67 (2006).
[Crossref]

Franzò, G.

S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[Crossref] [PubMed]

Frindell, K. L.

K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
[Crossref]

Fu, J.

M. Yu, J. Lin, J. Fu, H. J. Zhang, and Y. C. Han, “Sol–gel synthesis and photoluminescent properties of LaPO4:A (A - Eu3+, Ce3+, Tb3+) nanocrystalline thin films,” J. Mater. Chem. 13(6), 1413–1419 (2003).
[Crossref]

Geraldo, V.

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy,” J. Phys. Chem. C 114(45), 19206–19213 (2010).
[Crossref]

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel,” J. Eur. Ceram. Soc. 27(13-15), 4265–4628 (2007).
[Crossref]

Giorgi, P.

R. E. Marotti, P. Giorgi, G. Machado, and E. A. Dalchiele, “Crystallite size dependence of bandgap energy for electrodeposited ZnO grown at different temperatures,” Sol. Energy Mater. Sol. Cells 90(15), 2356–2361 (2006).
[Crossref]

Gong, J.

G. Ledoux, J. Gong, F. Huisken, O. Guilois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[Crossref]

Grosso, D.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Guilois, O.

G. Ledoux, J. Gong, F. Huisken, O. Guilois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[Crossref]

Guo, H.

H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, and H. Zhang, “Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworks For Luminescent Thin Films,” Adv. Mater. 22(37), 4190–4192 (2010).
[Crossref] [PubMed]

Han, Y. C.

M. Yu, J. Lin, J. Fu, H. J. Zhang, and Y. C. Han, “Sol–gel synthesis and photoluminescent properties of LaPO4:A (A - Eu3+, Ce3+, Tb3+) nanocrystalline thin films,” J. Mater. Chem. 13(6), 1413–1419 (2003).
[Crossref]

Huisken, F.

G. Ledoux, J. Gong, F. Huisken, O. Guilois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[Crossref]

Ishii, M.

M. Ishii, S. Komuro, and T. Morikawa, “Study on atomic coordination around Er doped into anatase and rutile TiO2:Er-O clustering dependent on the host crystal phase,” J. Appl. Phys. 94(6), 3823 (2003).
[Crossref]

Jubera, V.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Karanjai, M. K.

S. C. Ray, M. K. Karanjai, and D. Dasgupta, “Tin dioxide based transparent semiconducting films deposited by the dip-coating technique,” Surf. Coat. Tech. 102(1), 73–80 (1998).
[Crossref]

Kim, K. H.

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

Kim, T. W.

T. W. Kim, D. U. Lee, and Y. S. Yoon, “Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices,” J. Appl. Phys. 88(6), 3759–3761 (2000).
[Crossref]

Kim, T. Y.

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

Komuro, S.

M. Ishii, S. Komuro, and T. Morikawa, “Study on atomic coordination around Er doped into anatase and rutile TiO2:Er-O clustering dependent on the host crystal phase,” J. Appl. Phys. 94(6), 3823 (2003).
[Crossref]

Kong, X.

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

Laurent, J. M.

E. Dien, J. M. Laurent, and A. Smith, “Comparison of optical and electrical characteristics of SnO2-based thin films deposited by pyrosol from different tin precursors,” J. Eur. Ceram. Soc. 19(6–7), 787–789 (1999).
[Crossref]

Ledoux, G.

G. Ledoux, J. Gong, F. Huisken, O. Guilois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[Crossref]

Lee, D. U.

T. W. Kim, D. U. Lee, and Y. S. Yoon, “Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices,” J. Appl. Phys. 88(6), 3759–3761 (2000).
[Crossref]

Lercher, J. A.

H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, and H. Zhang, “Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworks For Luminescent Thin Films,” Adv. Mater. 22(37), 4190–4192 (2010).
[Crossref] [PubMed]

Leroy, C. M.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Lin, J.

M. Yu, J. Lin, J. Fu, H. J. Zhang, and Y. C. Han, “Sol–gel synthesis and photoluminescent properties of LaPO4:A (A - Eu3+, Ce3+, Tb3+) nanocrystalline thin films,” J. Mater. Chem. 13(6), 1413–1419 (2003).
[Crossref]

Lu, S.

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

Ma, H.

Y. Wang, J. Ma, F. Si, X. Yu, and H. Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering,” J. Lumin. 114(1), 71–76 (2005).
[Crossref]

Ma, J.

Y. Wang, J. Ma, F. Si, X. Yu, and H. Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering,” J. Lumin. 114(1), 71–76 (2005).
[Crossref]

Machado, G.

R. E. Marotti, P. Giorgi, G. Machado, and E. A. Dalchiele, “Crystallite size dependence of bandgap energy for electrodeposited ZnO grown at different temperatures,” Sol. Energy Mater. Sol. Cells 90(15), 2356–2361 (2006).
[Crossref]

Marotti, R. E.

R. E. Marotti, P. Giorgi, G. Machado, and E. A. Dalchiele, “Crystallite size dependence of bandgap energy for electrodeposited ZnO grown at different temperatures,” Sol. Energy Mater. Sol. Cells 90(15), 2356–2361 (2006).
[Crossref]

Matsuoka, T.

T. Matsuoka, T. Tohda, and T. Nitta, “The Low-Energy-Electron (LEE) Excitation of SnO2:Eu Powder Phosphor; Fundamental Characteristics,” J. Electrochem. Soc. 130(2), 417–423 (1983).
[Crossref]

Messaddeq, Y.

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

Morais, E. A.

T. F. Pineiz, L. V. A. Scalvi, M. J. Saeki, and E. A. Morais, “Interface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol–Gel Dip-Coating and Resistive Evaporation,” J. Electron. Mater. 39(8), 1170–1176 (2010).
[Crossref]

E. A. Morais, L. V. A. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route,” J. Non-Cryst. Solids 354(42-44), 4840–4845 (2008).
[Crossref]

E. A. Morais, L. V. A. Scalvi, A. Tabata, J. B. B. De Oliveira, and S. J. L. Ribeiro, “Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel,” J. Mater. Sci. 43(1), 345–349 (2008).
[Crossref]

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

Morikawa, T.

M. Ishii, S. Komuro, and T. Morikawa, “Study on atomic coordination around Er doped into anatase and rutile TiO2:Er-O clustering dependent on the host crystal phase,” J. Appl. Phys. 94(6), 3823 (2003).
[Crossref]

Navaneethakrishnan, K.

R. S. D. Bella and K. Navaneethakrishnan, “Donor binding energies and spin–orbit coupling in a spherical quantum dot,” Solid State Commun. 130(11), 773–776 (2004).
[Crossref]

Nitta, T.

T. Matsuoka, T. Tohda, and T. Nitta, “The Low-Energy-Electron (LEE) Excitation of SnO2:Eu Powder Phosphor; Fundamental Characteristics,” J. Electrochem. Soc. 130(2), 417–423 (1983).
[Crossref]

Ok, Y.-W.

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

Oliveira, J. B. B.

E. A. Morais, L. V. A. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route,” J. Non-Cryst. Solids 354(42-44), 4840–4845 (2008).
[Crossref]

Park, D. H.

D. H. Park, Y. H. Cho, Y. R. Do, and B. T. Ahn, “Characterization of Eu-Doped SnO2 Thin Films Deposited by Radio-Frequency Sputtering for a Transparent Conductive Phosphor Layer,” J. Electrochem. Soc. 153(4), H63–H67 (2006).
[Crossref]

Park, N. M.

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

Pellé, F.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Peng, H.

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

Pineiz, T. F.

T. F. Pineiz, E. A. de Morais, L. V. A. Scalvi, and C. F. Bueno, “Interface formation of nanostructured heterojunction SnO2:Eu/GaAs and electronic transport properties,” Appl. Surf. Sci. 267, 200–205 (2013).
[Crossref]

T. F. Pineiz, L. V. A. Scalvi, M. J. Saeki, and E. A. Morais, “Interface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol–Gel Dip-Coating and Resistive Evaporation,” J. Electron. Mater. 39(8), 1170–1176 (2010).
[Crossref]

Polman, A.

S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[Crossref] [PubMed]

Popitsch, A.

K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
[Crossref]

Priolo, F.

S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[Crossref] [PubMed]

Pulcinelli, S. H.

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
[Crossref]

S. J. L. Ribeiro, S. H. Pulcinelli, and C. V. Santilli, “SnO2:Eu nanocrystallites in SnO2 monolithic xerogels,” Chem. Phys. Lett. 190(1–2), 64–66 (1992).
[Crossref]

Qiu, S.

H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, and H. Zhang, “Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworks For Luminescent Thin Films,” Adv. Mater. 22(37), 4190–4192 (2010).
[Crossref] [PubMed]

Ray, S. C.

S. C. Ray, M. K. Karanjai, and D. Dasgupta, “Tin dioxide based transparent semiconducting films deposited by the dip-coating technique,” Surf. Coat. Tech. 102(1), 73–80 (1998).
[Crossref]

Reynaud, C.

G. Ledoux, J. Gong, F. Huisken, O. Guilois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[Crossref]

Ribeiro, S. J. L.

E. A. Morais, L. V. A. Scalvi, A. Tabata, J. B. B. De Oliveira, and S. J. L. Ribeiro, “Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel,” J. Mater. Sci. 43(1), 345–349 (2008).
[Crossref]

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
[Crossref]

S. J. L. Ribeiro, S. H. Pulcinelli, and C. V. Santilli, “SnO2:Eu nanocrystallites in SnO2 monolithic xerogels,” Chem. Phys. Lett. 190(1–2), 64–66 (1992).
[Crossref]

Robinson, M. R.

K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
[Crossref]

Ruggiero, L. O.

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

Saeki, M. J.

T. F. Pineiz, L. V. A. Scalvi, M. J. Saeki, and E. A. Morais, “Interface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol–Gel Dip-Coating and Resistive Evaporation,” J. Electron. Mater. 39(8), 1170–1176 (2010).
[Crossref]

Sanchez, C.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Santilli, C. V.

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy,” J. Phys. Chem. C 114(45), 19206–19213 (2010).
[Crossref]

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel,” J. Eur. Ceram. Soc. 27(13-15), 4265–4628 (2007).
[Crossref]

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
[Crossref]

S. J. L. Ribeiro, S. H. Pulcinelli, and C. V. Santilli, “SnO2:Eu nanocrystallites in SnO2 monolithic xerogels,” Chem. Phys. Lett. 190(1–2), 64–66 (1992).
[Crossref]

Scalvi, L. V. A.

T. F. Pineiz, E. A. de Morais, L. V. A. Scalvi, and C. F. Bueno, “Interface formation of nanostructured heterojunction SnO2:Eu/GaAs and electronic transport properties,” Appl. Surf. Sci. 267, 200–205 (2013).
[Crossref]

T. F. Pineiz, L. V. A. Scalvi, M. J. Saeki, and E. A. Morais, “Interface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol–Gel Dip-Coating and Resistive Evaporation,” J. Electron. Mater. 39(8), 1170–1176 (2010).
[Crossref]

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy,” J. Phys. Chem. C 114(45), 19206–19213 (2010).
[Crossref]

E. A. Morais, L. V. A. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route,” J. Non-Cryst. Solids 354(42-44), 4840–4845 (2008).
[Crossref]

E. A. Morais, L. V. A. Scalvi, A. Tabata, J. B. B. De Oliveira, and S. J. L. Ribeiro, “Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel,” J. Mater. Sci. 43(1), 345–349 (2008).
[Crossref]

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel,” J. Eur. Ceram. Soc. 27(13-15), 4265–4628 (2007).
[Crossref]

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

Seong, T.-Y.

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

Serna, R.

S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[Crossref] [PubMed]

Si, F.

Y. Wang, J. Ma, F. Si, X. Yu, and H. Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering,” J. Lumin. 114(1), 71–76 (2005).
[Crossref]

Smith, A.

E. Dien, J. M. Laurent, and A. Smith, “Comparison of optical and electrical characteristics of SnO2-based thin films deposited by pyrosol from different tin precursors,” J. Eur. Ceram. Soc. 19(6–7), 787–789 (1999).
[Crossref]

Song, H.

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

Stucky, G. D.

K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
[Crossref]

Sung, G. Y.

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

Tabata, A.

E. A. Morais, L. V. A. Scalvi, A. Tabata, J. B. B. De Oliveira, and S. J. L. Ribeiro, “Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel,” J. Mater. Sci. 43(1), 345–349 (2008).
[Crossref]

E. A. Morais, L. V. A. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route,” J. Non-Cryst. Solids 354(42-44), 4840–4845 (2008).
[Crossref]

Tohda, T.

T. Matsuoka, T. Tohda, and T. Nitta, “The Low-Energy-Electron (LEE) Excitation of SnO2:Eu Powder Phosphor; Fundamental Characteristics,” J. Electrochem. Soc. 130(2), 417–423 (1983).
[Crossref]

Treguer-Delapierre, M.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

van der Kolk, E.

J. W. E. Wiegman and E. van der Kolk, “Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modeling,” Sol. Energy Mater. Sol. Cells 103, 41–47 (2012).
[Crossref]

Viana, B.

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Wang, J.

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

Wang, Y.

Y. Wang, J. Ma, F. Si, X. Yu, and H. Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering,” J. Lumin. 114(1), 71–76 (2005).
[Crossref]

Wiegman, J. W. E.

J. W. E. Wiegman and E. van der Kolk, “Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modeling,” Sol. Energy Mater. Sol. Cells 103, 41–47 (2012).
[Crossref]

Yoon, Y. S.

T. W. Kim, D. U. Lee, and Y. S. Yoon, “Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices,” J. Appl. Phys. 88(6), 3759–3761 (2000).
[Crossref]

Yu, M.

M. Yu, J. Lin, J. Fu, H. J. Zhang, and Y. C. Han, “Sol–gel synthesis and photoluminescent properties of LaPO4:A (A - Eu3+, Ce3+, Tb3+) nanocrystalline thin films,” J. Mater. Chem. 13(6), 1413–1419 (2003).
[Crossref]

Yu, X.

Y. Wang, J. Ma, F. Si, X. Yu, and H. Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering,” J. Lumin. 114(1), 71–76 (2005).
[Crossref]

Zhang, H.

H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, and H. Zhang, “Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworks For Luminescent Thin Films,” Adv. Mater. 22(37), 4190–4192 (2010).
[Crossref] [PubMed]

Zhang, H. J.

M. Yu, J. Lin, J. Fu, H. J. Zhang, and Y. C. Han, “Sol–gel synthesis and photoluminescent properties of LaPO4:A (A - Eu3+, Ce3+, Tb3+) nanocrystalline thin films,” J. Mater. Chem. 13(6), 1413–1419 (2003).
[Crossref]

Zhang, J.

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

Zhu, Y.

H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, and H. Zhang, “Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworks For Luminescent Thin Films,” Adv. Mater. 22(37), 4190–4192 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Guo, Y. Zhu, S. Qiu, J. A. Lercher, and H. Zhang, “Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal-Organic Frameworks For Luminescent Thin Films,” Adv. Mater. 22(37), 4190–4192 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

G. Ledoux, J. Gong, F. Huisken, O. Guilois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[Crossref]

T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[Crossref]

Appl. Surf. Sci. (1)

T. F. Pineiz, E. A. de Morais, L. V. A. Scalvi, and C. F. Bueno, “Interface formation of nanostructured heterojunction SnO2:Eu/GaAs and electronic transport properties,” Appl. Surf. Sci. 267, 200–205 (2013).
[Crossref]

Chem. Phys. Lett. (1)

S. J. L. Ribeiro, S. H. Pulcinelli, and C. V. Santilli, “SnO2:Eu nanocrystallites in SnO2 monolithic xerogels,” Chem. Phys. Lett. 190(1–2), 64–66 (1992).
[Crossref]

J. Alloy. Comp. (1)

E. A. Morais, S. J. L. Ribeiro, L. V. A. Scalvi, C. V. Santilli, L. O. Ruggiero, S. H. Pulcinelli, and Y. Messaddeq, “Optical characteristics of Er –Yb doped SnO xerogels,” J. Alloy. Comp. 344(1-2), 217–220 (2002).
[Crossref]

J. Appl. Phys. (2)

M. Ishii, S. Komuro, and T. Morikawa, “Study on atomic coordination around Er doped into anatase and rutile TiO2:Er-O clustering dependent on the host crystal phase,” J. Appl. Phys. 94(6), 3823 (2003).
[Crossref]

T. W. Kim, D. U. Lee, and Y. S. Yoon, “Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices,” J. Appl. Phys. 88(6), 3759–3761 (2000).
[Crossref]

J. Chem. Phys. (1)

H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang, “Temperature dependence of luminescent spectra and dynamics in nanocrystallineY2O3:Eu3+,” J. Chem. Phys. 118(7), 3277–3282 (2003).
[Crossref]

J. Electrochem. Soc. (2)

D. H. Park, Y. H. Cho, Y. R. Do, and B. T. Ahn, “Characterization of Eu-Doped SnO2 Thin Films Deposited by Radio-Frequency Sputtering for a Transparent Conductive Phosphor Layer,” J. Electrochem. Soc. 153(4), H63–H67 (2006).
[Crossref]

T. Matsuoka, T. Tohda, and T. Nitta, “The Low-Energy-Electron (LEE) Excitation of SnO2:Eu Powder Phosphor; Fundamental Characteristics,” J. Electrochem. Soc. 130(2), 417–423 (1983).
[Crossref]

J. Electron. Mater. (1)

T. F. Pineiz, L. V. A. Scalvi, M. J. Saeki, and E. A. Morais, “Interface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol–Gel Dip-Coating and Resistive Evaporation,” J. Electron. Mater. 39(8), 1170–1176 (2010).
[Crossref]

J. Eur. Ceram. Soc. (2)

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel,” J. Eur. Ceram. Soc. 27(13-15), 4265–4628 (2007).
[Crossref]

E. Dien, J. M. Laurent, and A. Smith, “Comparison of optical and electrical characteristics of SnO2-based thin films deposited by pyrosol from different tin precursors,” J. Eur. Ceram. Soc. 19(6–7), 787–789 (1999).
[Crossref]

J. Lumin. (1)

Y. Wang, J. Ma, F. Si, X. Yu, and H. Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering,” J. Lumin. 114(1), 71–76 (2005).
[Crossref]

J. Mater. Chem. (1)

M. Yu, J. Lin, J. Fu, H. J. Zhang, and Y. C. Han, “Sol–gel synthesis and photoluminescent properties of LaPO4:A (A - Eu3+, Ce3+, Tb3+) nanocrystalline thin films,” J. Mater. Chem. 13(6), 1413–1419 (2003).
[Crossref]

J. Mater. Sci. (1)

E. A. Morais, L. V. A. Scalvi, A. Tabata, J. B. B. De Oliveira, and S. J. L. Ribeiro, “Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel,” J. Mater. Sci. 43(1), 345–349 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

E. A. Morais, L. V. A. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. B. Oliveira, “Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route,” J. Non-Cryst. Solids 354(42-44), 4840–4845 (2008).
[Crossref]

J. Phys. Chem. C (1)

V. Geraldo, V. Briois, L. V. A. Scalvi, and C. V. Santilli, “Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy,” J. Phys. Chem. C 114(45), 19206–19213 (2010).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

G. E. S. Brito, S. J. L. Ribeiro, V. Briois, J. Dexpert-Ghys, C. V. Santilli, and S. H. Pulcinelli, “Short Range Order Evolution in the Preparation of SnO2 Based Materials,” J. Sol-Gel Sci. Technol. 8(1–3), 261–268 (1997).
[Crossref]

J. Solid State Chem. (1)

K. L. Frindell, M. H. Bartl, M. R. Robinson, G. C. Bazan, A. Popitsch, and G. D. Stucky, “Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls,” J. Solid State Chem. 172(1), 81–88 (2003).
[Crossref]

Micro. Mes. Mat. (1)

C. M. Leroy, T. Cardinal, V. Jubera, C. Aymonier, M. Treguer-Delapierre, C. Boissière, D. Grosso, C. Sanchez, B. Viana, and F. Pellé, “Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn,” Micro. Mes. Mat. 170, 123–130 (2013).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Coffa, G. Franzò, F. Priolo, A. Polman, and R. Serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B Condens. Matter 49(23), 16313–16320 (1994).
[Crossref] [PubMed]

Science (1)

A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals and Quantum Dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

J. W. E. Wiegman and E. van der Kolk, “Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modeling,” Sol. Energy Mater. Sol. Cells 103, 41–47 (2012).
[Crossref]

R. E. Marotti, P. Giorgi, G. Machado, and E. A. Dalchiele, “Crystallite size dependence of bandgap energy for electrodeposited ZnO grown at different temperatures,” Sol. Energy Mater. Sol. Cells 90(15), 2356–2361 (2006).
[Crossref]

Solid State Commun. (1)

R. S. D. Bella and K. Navaneethakrishnan, “Donor binding energies and spin–orbit coupling in a spherical quantum dot,” Solid State Commun. 130(11), 773–776 (2004).
[Crossref]

Surf. Coat. Tech. (1)

S. C. Ray, M. K. Karanjai, and D. Dasgupta, “Tin dioxide based transparent semiconducting films deposited by the dip-coating technique,” Surf. Coat. Tech. 102(1), 73–80 (1998).
[Crossref]

Other (1)

B. D. Cullity and R. Stock, Elements of X-Ray Diffraction (Prentice Hall, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of heterojunction sample. Bottom inset: band energy diagram of the heterostructure interface. Upper left inset: SEM image of the GaAs film surface. Upper right inset: SEM image of the GaAs/SnO2:2at%Eu film surface.
Fig. 2
Fig. 2 Luminescence spectra of GaAs/SnO2:2at%Eu thermally annealed at 200°C by 1 hour, and at 400°C by 20 minutes, as well as SnO2:2at%Eu film treated at 500°C by 1 hour. Excitation: line 350 nm of the Kr+ laser.
Fig. 3
Fig. 3 X-ray diffraction patterns of GaAs/SnO2:2at%Eu thermally annealed at 200°C by 1 hour, and at 400°C by 20 minutes, and SnO2:2at%Eu film treated at 500°C by 1 hour.
Fig. 4
Fig. 4 Luminescence spectra of SnO2:2at%Eu and SnO2:4at%Eu xerogels treated at 1000°C. Excitation: line 350 nm of the Kr+ laser. Inset: X- ray diffractogram of SnO2:4at%Eu powder (previous of being pressed down to pellet format). Blue lines are from the file JCPDS- 41-1445.
Fig. 5
Fig. 5 (a) Photoluminescence of a Eu 2at%-doped SnO2 thin film deposited on quartz substrate and thermally annealed at 1000°C by 1 hour. Excitation: line 350 nm of the Kr+ laser. (b) X-ray diffraction pattern for this film. SnO2 planes are from the file JCPDS- 41-1445.
Fig. 6
Fig. 6 (a) Eu3+ ion located preferentially at crystallites surface (top) and the PL structure is as shown at right, for the heterojunction treated at 200°C/1 hour; or Eu3+ ion is located prefentially in the middle of the larger crystallite (bottom), and the PL is as obtained for the SnO2 film on quartz (right). (b) at left, it is the energy band diagram for the heterojunction thermally annealed at 200°C/1hour, and at right, it is the energy band diagram for SnO2 film on quartz.
Fig. 7
Fig. 7 SEM image (magnitude 10000x) for the sample GaAs/SnO2:2%Eu annealed at 400°C by 20 minutes, showing the marked regions where the EDX analysis was carried out.
Fig. 8
Fig. 8 Relative Eu/Sn composition obtained by scanning EDX-signal along the yellow line drawn in SEM image shown in the inset, for the heterostructure GaAs/SnO2:2%Eu annealed at 400°C by 20 minutes.
Fig. 9
Fig. 9 SEM (magnitude 10000x) of: (a) SnO2:2%Eu and (c) heterojunction GaAs/SnO2:2%Eu annealed at de 200°C / 1hour. EBSD carried out in the SEM microscope: (b) SnO2:2%Eu thin film and (d) heterojunction GaAs/SnO2:2%Eu thermally annealed at de 200°C / 1hour

Tables (2)

Tables Icon

Table 1 – Crystallite size for the thin film samples and powder, evaluated by the Scherrer equation

Tables Icon

Table 2 Relative composition of Sn and Eu obtained by EDX with magnitude 10000x, for the sample GaAs/SnO2:2%Eu annealed at 400°C by 20 minutes.

Metrics