Abstract

Research concerning CH3NH3PbI3 solar cells (SCs) has attracted great attention. However, the CH3NH3PbI3 material’s critical dispersion relationships, i.e. the refractive index and the extinction coefficient, n(λ) and k(λ), as functions of λ, have been little studied. Without this knowledge, it will be difficult to quantitively investigate the optical properties of the CH3NH3PbI3 SCs. We studied n(λ) and k(λ) of CH3NH3PbI3 with spectroscopic ellipsometry. The CH3NH3PbI3 film was fabricated by dual-source evaporation, and the surface roughness was investigated to facilitate SE modeling. With the acquired n(λ) and k(λ), we applied the finite difference time domain method to calculate the ultimate efficiency, η(d), without considering carrier recombination, of the planar CH3NH3PbI3 SC as a function of the film thickness, d, from 31.25 nm to 2 μm, and compared with those of GaAs, c-Si, and a-Si:H(10%H) SCs. It is demonstrated that, η(d) for CH3NH3PbI3 SC is a little smaller than, but very close to that for the GaAs SC, however, much larger than that for the c-Si SC, for all d calculated; and much larger than that for the a-Si:H(10%H) SC when d > 100 nm. Apart from an appropriate band gap near 1.5 eV, the larger k(λ) and smaller n(λ) of CH3NH3PbI3 explain why the CH3NH3PbI3 SC has high efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure

Ziyi Wang, Sijian Yuan, Dahai Li, Feng Jin, Rongjun Zhang, Yiqiang Zhan, Ming Lu, Songyou Wang, Yuxiang Zheng, Junpeng Guo, Zhiyong Fan, and Liangyao Chen
Opt. Express 24(22) A1431-A1443 (2016)

Determination of the basic optical parameters of ZnSnN2

Fuling Deng, Hongtao Cao, Lingyan Liang, Jun Li, Junhua Gao, Hongliang Zhang, Ruifeng Qin, and Caichi Liu
Opt. Lett. 40(7) 1282-1285 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
    [Crossref] [PubMed]
  2. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
    [Crossref]
  3. N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J Phys. Chem. Lett. 4(15), 2423–2429 (2013).
    [Crossref]
  4. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
    [Crossref] [PubMed]
  5. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
    [Crossref]
  6. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
    [Crossref] [PubMed]
  7. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
    [Crossref] [PubMed]
  8. D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
    [Crossref]
  9. G. Hodes, “Applied physics: perovskite-based solar cells,” Science 342(6156), 317–318 (2013).
    [Crossref] [PubMed]
  10. C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
    [Crossref] [PubMed]
  11. R. M. A. Azzam and N. M. Bashara, “Ellipsometry and polarised light,” Nature 269(5625), 270 (1977).
    [Crossref]
  12. M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
    [Crossref]
  13. J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
    [Crossref]
  14. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
    [Crossref] [PubMed]
  15. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).
  16. R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, and K. Aiempanakit, “Determination of optical and physical properties of ZrO2 Films by spectroscopic ellipsometry,” Procedia Engineering 32, 745–751 (2012).
    [Crossref]
  17. P. E. D, Handbook of Optical Constants of Solids (Orlando, FL, 1985).
  18. http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf .
  19. M. Fox, Optical Properties of Solids (Oxford University, Oxford, 2001).
  20. G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J Phys. D: App. Phys. 41, 045304 (2008).
  21. A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 34, 7018 (1986).
    [Crossref]
  22. http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/New_Amorphous_Dispersion_Formula.pdf.”
  23. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
    [Crossref] [PubMed]
  24. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
    [Crossref] [PubMed]
  25. D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
    [Crossref] [PubMed]
  26. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
    [Crossref] [PubMed]
  27. H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
    [Crossref] [PubMed]
  28. W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
    [Crossref]
  29. S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
    [Crossref]
  30. W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. Qin, “Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications,” J Phys. D: App. Phys. 46, 195106 (2013).
  31. X. Ziang, W. Wei, Q. Laixiang, X. Wanjin, and G. G. Qin, “Optical absorption characteristics of nanometer and submicron a-Si:H solar cells with two kinds of nano textures,” Opt. Express 21(15), 18043–18052 (2013).
    [Crossref] [PubMed]
  32. W. Shockley and H. J. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” Appl. Phys. (Berl.) 32(3), 510 (1961).
    [Crossref]
  33. Air Mass 1.5 Direct+Circumsolar spectrum, American Society for Testing and Materials: http://rredc.nrel.gov/solar/spectra/am1.5/,” (American Society for Testing and Materials, 2011).
  34. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  35. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8(9), 491–493 (1983).
    [Crossref] [PubMed]
  36. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
    [Crossref]
  37. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  38. S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
    [Crossref]
  39. H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead halide perovskite: new horizons in solar cell research,” J. Phys. Chem. C 118, 5615–5625 (2014).
  40. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 13902–13913 (2013).
    [Crossref]
  41. E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
    [Crossref]
  42. Y. Zhao, A. M. Nardes, and K. Zhu, “Solid-state mesostructured perovskite CH3NH3PbI3solar cells: charge transport, recombination, and diffusion length,” J Phys. Chem. Lett. 5(3), 490–494 (2014).
    [Crossref]
  43. V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
    [Crossref] [PubMed]
  44. D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
    [Crossref]
  45. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]

2014 (8)

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead halide perovskite: new horizons in solar cell research,” J. Phys. Chem. C 118, 5615–5625 (2014).

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

Y. Zhao, A. M. Nardes, and K. Zhu, “Solid-state mesostructured perovskite CH3NH3PbI3solar cells: charge transport, recombination, and diffusion length,” J Phys. Chem. Lett. 5(3), 490–494 (2014).
[Crossref]

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

2013 (16)

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 13902–13913 (2013).
[Crossref]

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
[Crossref] [PubMed]

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. Qin, “Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications,” J Phys. D: App. Phys. 46, 195106 (2013).

X. Ziang, W. Wei, Q. Laixiang, X. Wanjin, and G. G. Qin, “Optical absorption characteristics of nanometer and submicron a-Si:H solar cells with two kinds of nano textures,” Opt. Express 21(15), 18043–18052 (2013).
[Crossref] [PubMed]

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J Phys. Chem. Lett. 4(15), 2423–2429 (2013).
[Crossref]

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
[Crossref] [PubMed]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

G. Hodes, “Applied physics: perovskite-based solar cells,” Science 342(6156), 317–318 (2013).
[Crossref] [PubMed]

2012 (6)

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, and K. Aiempanakit, “Determination of optical and physical properties of ZrO2 Films by spectroscopic ellipsometry,” Procedia Engineering 32, 745–751 (2012).
[Crossref]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

2011 (1)

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

2010 (1)

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[Crossref]

2008 (1)

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J Phys. D: App. Phys. 41, 045304 (2008).

2003 (1)

S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
[Crossref]

1986 (1)

A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 34, 7018 (1986).
[Crossref]

1983 (1)

1982 (1)

1977 (1)

R. M. A. Azzam and N. M. Bashara, “Ellipsometry and polarised light,” Nature 269(5625), 270 (1977).
[Crossref]

1961 (2)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

W. Shockley and H. J. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” Appl. Phys. (Berl.) 32(3), 510 (1961).
[Crossref]

Abate, A.

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
[Crossref] [PubMed]

Aiempanakit, K.

R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, and K. Aiempanakit, “Determination of optical and physical properties of ZrO2 Films by spectroscopic ellipsometry,” Procedia Engineering 32, 745–751 (2012).
[Crossref]

Amat, A.

E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 13902–13913 (2013).
[Crossref]

Anand, R. S.

S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
[Crossref]

Arsyad, W. S.

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

Avellán-Hampe, A.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Awasthi, A.

S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
[Crossref]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, “Ellipsometry and polarised light,” Nature 269(5625), 270 (1977).
[Crossref]

Baikie, T.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

Barea, E. M.

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, “Ellipsometry and polarised light,” Nature 269(5625), 270 (1977).
[Crossref]

Bi, D.

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
[Crossref] [PubMed]

Bisio, F.

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

Bisquert, J.

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

Biswas, A. K.

S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
[Crossref]

Bloomer, I.

A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 34, 7018 (1986).
[Crossref]

Bolink, H. J.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Boschloo, G.

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Burschka, J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Cai, M.

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Canepa, M.

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

Catchpole, K. R.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

Cavalleri, O.

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

Chandiran, A. K.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Chen, H.

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Chen, H. L.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[Crossref]

Chen, Q.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Chindaudom, P.

R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, and K. Aiempanakit, “Determination of optical and physical properties of ZrO2 Films by spectroscopic ellipsometry,” Procedia Engineering 32, 745–751 (2012).
[Crossref]

Choi, H.

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

Chuang, S. Y.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[Crossref]

Cui, G.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Cui, Y.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Dai, S.

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Dalibor, T.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

De Angelis, F.

E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 13902–13913 (2013).
[Crossref]

Deckman, H. W.

Duan, H. S.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Eiamchai, P.

R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, and K. Aiempanakit, “Determination of optical and physical properties of ZrO2 Films by spectroscopic ellipsometry,” Procedia Engineering 32, 745–751 (2012).
[Crossref]

Eperon, G. E.

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
[Crossref] [PubMed]

Eraerds, P.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Espallargas, G. M.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Etgar, L.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Fabregat-Santiago, F.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

Fan, S.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Fang, X.

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Fang, Y.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

Forouhi, A. R.

A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 34, 7018 (1986).
[Crossref]

Gao, P.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Gonzalez-Pedro, V.

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

Graetzel, M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Grätzel, M.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 13902–13913 (2013).
[Crossref]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Hagfeldt, A.

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
[Crossref] [PubMed]

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

Häggman, L.

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

He, G.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J Phys. D: App. Phys. 41, 045304 (2008).

Hodes, G.

G. Hodes, “Applied physics: perovskite-based solar cells,” Science 342(6156), 317–318 (2013).
[Crossref] [PubMed]

Hong, Z.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Horprathum, M.

R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, and K. Aiempanakit, “Determination of optical and physical properties of ZrO2 Films by spectroscopic ellipsometry,” Procedia Engineering 32, 745–751 (2012).
[Crossref]

Hu, H.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Huo, Z.

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Im, S. H.

H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead halide perovskite: new horizons in solar cell research,” J. Phys. Chem. C 118, 5615–5625 (2014).

Jaegermann, W.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

Jeong, J.

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

Johansson, E. M.

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
[Crossref] [PubMed]

Johansson, E. M. J.

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

Johnston, M. B.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Juarez-Perez, E. J.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

Kadro, J. M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

Kang, J.-H.

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Keller, J.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Kelly, T. L.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

Kim, H. B.

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

Kim, H.-S.

H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead halide perovskite: new horizons in solar cell research,” J. Phys. Chem. C 118, 5615–5625 (2014).

Kim, J. Y.

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

Kim, S.

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

Kou, D.

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Kumar, S.

S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
[Crossref]

Laixiang, Q.

Lakus-Wollny, K.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

Lam, Y. M.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

Lee, B.

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Lee, J. K.

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Lee, J.-H.

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Lee, M. M.

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Lee, W. H.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[Crossref]

Lee, Y. H.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Leijtens, T.

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
[Crossref] [PubMed]

Li, G.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Li, G. H.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J Phys. D: App. Phys. 41, 045304 (2008).

Lim, S. S.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

Lin, C. H.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[Crossref]

Liu, B.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Liu, D.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

Liu, M.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J Phys. D: App. Phys. 41, 045304 (2008).

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Liu, W.

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Liu, Y.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Liu, Z.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Luo, S.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Lv, S.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Maidecchi, G.

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

Malinkiewicz, O.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Mankel, E.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

Mathews, N.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

Mayer, T.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

Mhaisalkar, S.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

Mhaisalkar, S. G.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

Miyasaka, T.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Mokkapati, S.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

Moon, S. J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Moon, S.-J.

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

Mora-Sero, I.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

Mosconi, E.

E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 13902–13913 (2013).
[Crossref]

Murakami, T. N.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Narain, J.

S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
[Crossref]

Nardes, A. M.

Y. Zhao, A. M. Nardes, and K. Zhu, “Solid-state mesostructured perovskite CH3NH3PbI3solar cells: charge transport, recombination, and diffusion length,” J Phys. Chem. Lett. 5(3), 490–494 (2014).
[Crossref]

Nazeeruddin, M. K.

E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 13902–13913 (2013).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Pan, X.

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Pang, S.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Parisi, J.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Park, N.-G.

H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead halide perovskite: new horizons in solar cell research,” J. Phys. Chem. C 118, 5615–5625 (2014).

N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J Phys. Chem. Lett. 4(15), 2423–2429 (2013).
[Crossref]

Pathak, S.

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
[Crossref] [PubMed]

Pellet, N.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Penco, A.

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

Peng, Q.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Prato, M.

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

Qin, G.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. Qin, “Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications,” J Phys. D: App. Phys. 46, 195106 (2013).

Qin, G. G.

Qin, T.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Queisser, H. J. J.

W. Shockley and H. J. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” Appl. Phys. (Berl.) 32(3), 510 (1961).
[Crossref]

Richter, M.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Riedel, I.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Roxlo, C. B.

Ryu, S.-W.

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Schreyer, M.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

Schubbert, C.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Schwarzmüller, S.

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
[Crossref] [PubMed]

Shockley, W.

W. Shockley and H. J. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” Appl. Phys. (Berl.) 32(3), 510 (1961).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Shukla, V. K.

S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
[Crossref]

Snaith, H. J.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Song, S.

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

Su, W. F.

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[Crossref]

Sum, T. C.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

Sun, S.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

Teuscher, J.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Toccafondi, C.

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

Walker, B.

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

Wang, H. H.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, W.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. Qin, “Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications,” J Phys. D: App. Phys. 46, 195106 (2013).

Wang, X. J.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J Phys. D: App. Phys. 41, 045304 (2008).

Wanjin, X.

Wei, F.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

Wei, W.

White, T. J.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

Wußler, M.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

Xie, Z.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. Qin, “Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications,” J Phys. D: App. Phys. 46, 195106 (2013).

Xing, G.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

Xu, H.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Xue, Z.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Yablonovitch, E.

Yang, L.

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
[Crossref] [PubMed]

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

Yang, Y.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Yella, A.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Yu, Y.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Yusoh, R.

R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, and K. Aiempanakit, “Determination of optical and physical properties of ZrO2 Films by spectroscopic ellipsometry,” Procedia Engineering 32, 745–751 (2012).
[Crossref]

Zhang, J.

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. Qin, “Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications,” J Phys. D: App. Phys. 46, 195106 (2013).

Zhang, L. D.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J Phys. D: App. Phys. 41, 045304 (2008).

Zhang, Y.

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. Qin, “Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications,” J Phys. D: App. Phys. 46, 195106 (2013).

Zhao, Y.

Y. Zhao, A. M. Nardes, and K. Zhu, “Solid-state mesostructured perovskite CH3NH3PbI3solar cells: charge transport, recombination, and diffusion length,” J Phys. Chem. Lett. 5(3), 490–494 (2014).
[Crossref]

Zhou, H.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Zhu, K.

Y. Zhao, A. M. Nardes, and K. Zhu, “Solid-state mesostructured perovskite CH3NH3PbI3solar cells: charge transport, recombination, and diffusion length,” J Phys. Chem. Lett. 5(3), 490–494 (2014).
[Crossref]

Ziang, X.

Appl. Phys. (Berl.) (1)

W. Shockley and H. J. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” Appl. Phys. (Berl.) 32(3), 510 (1961).
[Crossref]

Chem. Commun. (Camb.) (1)

H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang, and S. Dai, “Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material,” Chem. Commun. (Camb.) 49(66), 7277–7279 (2013).
[Crossref] [PubMed]

Chem. Mater. (1)

S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, and G. Cui, “NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells,” Chem. Mater. 26(3), 1485–1491 (2014).
[Crossref]

J Mat. Chem. Anal. (1)

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J Mat. Chem. Anal. 1, 5628–5641 (2013).

J Phys. Chem. Lett. (3)

N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J Phys. Chem. Lett. 4(15), 2423–2429 (2013).
[Crossref]

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J Phys. Chem. Lett. 5, 680–685 (2014).
[Crossref]

Y. Zhao, A. M. Nardes, and K. Zhu, “Solid-state mesostructured perovskite CH3NH3PbI3solar cells: charge transport, recombination, and diffusion length,” J Phys. Chem. Lett. 5(3), 490–494 (2014).
[Crossref]

J Phys. D: App. Phys. (2)

W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. Qin, “Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications,” J Phys. D: App. Phys. 46, 195106 (2013).

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J Phys. D: App. Phys. 41, 045304 (2008).

J. Am. Chem. Soc. (2)

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (2)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

J. Colloid Interface Sci. (1)

C. Toccafondi, M. Prato, G. Maidecchi, A. Penco, F. Bisio, O. Cavalleri, and M. Canepa, “Optical properties of yeast cytochrome c monolayer on gold: an in situ spectroscopic ellipsometry investigation,” J. Colloid Interface Sci. 364(1), 125–132 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (2)

H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead halide perovskite: new horizons in solar cell research,” J. Phys. Chem. C 118, 5615–5625 (2014).

E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “First-Principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117(27), 13902–13913 (2013).
[Crossref]

Nano Lett. (2)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, “General working principles of CH3NH3PbX3 perovskite solar cells,” Nano Lett. 14(2), 888–893 (2014).
[Crossref] [PubMed]

Nanoscale (2)

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5(23), 11686–11691 (2013).
[Crossref] [PubMed]

H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6(12), 6679–6683 (2014).
[Crossref] [PubMed]

Nat Commun (1)

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells,” Nat Commun 4, 2885 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8(2), 133–138 (2013).
[Crossref]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2013).
[Crossref]

Nature (3)

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

R. M. A. Azzam and N. M. Bashara, “Ellipsometry and polarised light,” Nature 269(5625), 270 (1977).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 34, 7018 (1986).
[Crossref]

Procedia Engineering (1)

R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, and K. Aiempanakit, “Determination of optical and physical properties of ZrO2 Films by spectroscopic ellipsometry,” Procedia Engineering 32, 745–751 (2012).
[Crossref]

RSC Advances (1)

D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762 (2013).
[Crossref]

Science (3)

G. Hodes, “Applied physics: perovskite-based solar cells,” Science 342(6156), 317–318 (2013).
[Crossref] [PubMed]

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science 342(6156), 344–347 (2013).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Synth. Met. (1)

S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synth. Met. 139(3), 751–753 (2003).
[Crossref]

Thin Solid Films (3)

W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su, and C. H. Lin, “Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode,” Thin Solid Films 518(24), 7450–7454 (2010).
[Crossref]

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Other (5)

P. E. D, Handbook of Optical Constants of Solids (Orlando, FL, 1985).

http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf .

M. Fox, Optical Properties of Solids (Oxford University, Oxford, 2001).

http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/New_Amorphous_Dispersion_Formula.pdf.”

Air Mass 1.5 Direct+Circumsolar spectrum, American Society for Testing and Materials: http://rredc.nrel.gov/solar/spectra/am1.5/,” (American Society for Testing and Materials, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

XRD spectra of CH3NH3PbI3/glass and PbI2/glass. The baselines are offset for easy comparison, and the highest intensities of the two spectra have been adjusted to the same height.

Fig. 2
Fig. 2

ESEM image of the CH3NH3PbI3 film grown on glass substrate. It can be seen that after the 45 min 100°C annealing process, the vapor deposited CH3NH3PbI3 film appears uniform on the 5.0 μm scale.

Fig. 3
Fig. 3

AFM image of the CH3NH3PbI3 film grown on glass substrate.

Fig. 4
Fig. 4

(a): Experimental and fitting results of Is(ω) and Ic(ω) of the quartz material. (b): The calculated n(λ) and k(λ) results of the quartz material.

Fig. 5
Fig. 5

(a): Schematic of the three-layer surface roughness model of the CH3NH3PbI3 film on a quartz substrate. (b): Experimental and fitting results of Is(ω) and Ic(ω) of the CH3NH3PbI3 material. (c): The calculated n(λ) and k(λ) results CH3NH3PbI3 material.

Fig. 6
Fig. 6

Comparison of the k(λ) results obtained from SE, absorbance, Ref [24]. and Ref [27]. Inset: comparison of the k(λ) results obtained from SE and the Kramers-Kronig calculation.

Fig. 7
Fig. 7

α(λ) of c-Si, a-Si:H(10%H), GaAs and CH3NH3PbI3 materials.

Fig. 8
Fig. 8

Comparison of n(λ) for c-Si, GaAs, CH3NH3PbI3, P3HT:PCBM and PPV.

Fig. 9
Fig. 9

η(d) of c-Si, a-Si:H(10%H), GaAs and CH3NH3PbI3 planar SCs. The Yablonovitch limits and the Shockley-Queisser limits of the four kinds of materials are also presented.

Fig. 10
Fig. 10

R0(λ) of c-Si, a-Si:H(10%H), GaAs and CH3NH3PbI3.

Fig. 11
Fig. 11

η(d) of c-Si, a-Si:H(10%H), GaAs and CH3NH3PbI3 planar SCs, when R = 0. Inset: schematic of the planar SC, the light travelling process and the light intensities.

Tables (2)

Tables Icon

Table 1 Fitting parameters of the quartz substrate.

Tables Icon

Table 2 Fitting parameters of the CH3NH3PbI3 material.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R p R s =tanψ e iΔ
ε ˜ ( ω )= ε + ( ε s ε ) ω t 2 ω t 2 ω 2 +i Γ 0 ω
k( ω )={ j=1 N f j ( ω ω g ) ( ω ω j ) 2 + Γ j 2 , for ω ω g 0 , for ω< ω g
n( ω )= n + j=1 N B j ( ω ω j )+ C j ( ω ω j ) 2 + Γ j 2
{ B j = f j Γ j [ Γ j 2 ( ω j ω g ) 2 ] C j =2 f j Γ j ( ω j ω g )
η= 0 λ g I( λ )A( λ ) λ λ g dλ 0 I( λ )dλ
R 0 ( λ )= [ n( λ )1 ] 2 + [ k( λ ) ] 2 [ n( λ )+1 ] 2 + [ k( λ ) ] 2

Metrics