Abstract

Self-assembled monolayers (SAMs) of organic molecules are widely employed in surface chemistry and biology, and serve as ultra-fine lithographic resists. Due to their small thickness of only a few nanometers, the analysis of patterned monolayer surfaces using conventional methods requires thorough point-by-point scanning using complicated equipment. In the work reported herein, patterned monolayers are simply and directly observed using a bright-field optical microscope. Features as narrow as 500 nm are properly recognized. The monolayers modify the spectral reflectivity pattern of a silica-on-silicon thin film, and introduce a contrast between bare and monolayer-coated regions of the substrate. The method can also distinguish between regions of single-layer and bi-layer coatings. The observations are supported by calculations, and by control experiments using atomic force microscopy, scanning Raman spectrometry and scanning reflection spectrometry. We show here that chemical reactions leading to the formation of a bi-layer of SAMs correspond to an optical contrast visible to the naked eye. This contrast, in turn, could provide a simple and effective differentiation between monolayers and adsorbed analytes, with possible applications in chemical and/or biological sensing. The method is also applicable to the study of graphene-on-SAM devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc. 102(1), 92–98 (1980).
    [Crossref]
  2. A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev. 96(4), 1533–1554 (1996).
    [Crossref] [PubMed]
  3. N. K. Chaki and K. Vijayamohanan, “Self-assembled monolayers as a tunable platform for biosensor applications,” Biosens. Bioelectron. 17(1-2), 1–12 (2002).
    [Crossref] [PubMed]
  4. D. Samanta and A. Sarkar, “Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications,” Chem. Soc. Rev. 40(5), 2567–2592 (2011).
    [Crossref] [PubMed]
  5. I. Willner, A. Riklin, B. Shoham, D. Rivenzon, and E. Katz, “Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes,” Adv. Mater. 5(12), 912–915 (1993).
    [Crossref]
  6. H. Sugimura, T. Hanji, O. Takai, T. Masuda, and H. Misawa, “Photolithography based on organosilane self-assembled monolayer resist,” Electrochim. Acta 47(1-2), 103–107 (2001).
    [Crossref]
  7. V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114(13), 5221–5230 (1992).
    [Crossref]
  8. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a molecular junction,” Science 278(5336), 252–254 (1997).
    [Crossref]
  9. M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
    [Crossref] [PubMed]
  10. B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
    [Crossref]
  11. A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, “Structure and Dynamics In Alkanethiolate Monolayers Self-Assembled On Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study,” J. Am. Chem. Soc. 119(11), 2682–2692 (1997).
    [Crossref]
  12. K. Nakano, T. Sato, M. Tazaki, and M. Takagi, “Self-assembled monolayer formation from decaneselenol on polycrystalline gold as characterized by electrochemical measurements, quartz-crystal microbalance, XPS, and IR spectroscopy,” Langmuir 16(5), 2225–2229 (2000).
    [Crossref]
  13. G. E. Poirier, “Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy,” Chem. Rev. 97(4), 1117–1128 (1997).
    [Crossref] [PubMed]
  14. D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films 515(4), 1433–1438 (2006).
    [Crossref]
  15. G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
    [Crossref]
  16. G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005).
    [Crossref] [PubMed]
  17. T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
    [Crossref] [PubMed]
  18. T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
    [Crossref] [PubMed]
  19. J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
    [Crossref] [PubMed]
  20. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).
  21. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
    [Crossref] [PubMed]
  22. S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2),” Nano Lett. 7(9), 2707–2710 (2007).
    [Crossref] [PubMed]
  23. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]
  24. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
    [Crossref] [PubMed]
  25. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
    [Crossref] [PubMed]
  26. G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
    [Crossref] [PubMed]
  27. G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
    [Crossref] [PubMed]
  28. X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
    [Crossref]
  29. M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
    [Crossref] [PubMed]
  30. X. Wang, J.-B. Xu, C. Wang, J. Du, and W. Xie, “High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers,” Adv. Mater. 23(21), 2464–2468 (2011).
    [Crossref] [PubMed]
  31. Z. Liu, A. A. Bol, and W. Haensch, “Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers,” Nano Lett. 11(2), 523–528 (2011).
    [Crossref] [PubMed]
  32. N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
    [Crossref]
  33. S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, “Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,” Nano Lett. 12(2), 964–969 (2012).
    [Crossref] [PubMed]
  34. Y. Li, C.-Y. Xu, P. Hu, and L. Zhen, “Carrier control of MoS2 nanoflakes by functional self-assembled monolayers,” ACS Nano 7(9), 7795–7804 (2013).
    [Crossref] [PubMed]
  35. S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
    [Crossref] [PubMed]
  36. Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
    [Crossref]
  37. J. Liu, J. Tang, and J. J. Gooding, “Strategies for chemical modification of graphene and applications of chemically modified graphene,” J. Mater. Chem. 22(25), 12435–12452 (2012).
    [Crossref]
  38. S. Sarkar, E. Bekyarova, S. Niyogi, and R. C. Haddon, “Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile,” J. Am. Chem. Soc. 133(10), 3324–3327 (2011).
    [Crossref] [PubMed]
  39. R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
    [Crossref] [PubMed]
  40. M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  41. H. A. Macleod, Thin-Film Optical Filters, Fourth Edition (Taylor & Francis, 2010).
  42. D. Aspnes and A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27(2), 985–1009 (1983).
    [Crossref]
  43. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]
  44. D. W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions (Elsevier, 2009).
  45. N. Tillman, A. Ulman, J. S. Schildkraut, and T. L. Penner, “Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation,” J. Am. Chem. Soc. 110(18), 6136–6144 (1988).
    [Crossref] [PubMed]
  46. M. Pomerantz, A. Segmüller, L. Netzer, and J. Sagiv, “Coverage of Si substrates by self-assembling monolayers and multilayers as measured by IR, wettability and X-ray diffraction,” Thin Solid Films 132(1-4), 153–162 (1985).
    [Crossref]
  47. N. Tillman, A. Ulman, and T. L. Penner, “Formation of multilayers by self-assembly,” Langmuir 5(1), 101–111 (1989).
    [Crossref]
  48. A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
    [Crossref]
  49. A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
    [Crossref] [PubMed]
  50. R. Fait-Cohen, “Functionalized silicon oxide surfaces: from monolayers to nanospheres,” in Department of Chemistry (Bar-Ilan University, Ramat-Gan, Israel, 2013).

2014 (4)

G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
[Crossref] [PubMed]

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Li, C.-Y. Xu, P. Hu, and L. Zhen, “Carrier control of MoS2 nanoflakes by functional self-assembled monolayers,” ACS Nano 7(9), 7795–7804 (2013).
[Crossref] [PubMed]

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

2012 (4)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, “Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,” Nano Lett. 12(2), 964–969 (2012).
[Crossref] [PubMed]

J. Liu, J. Tang, and J. J. Gooding, “Strategies for chemical modification of graphene and applications of chemically modified graphene,” J. Mater. Chem. 22(25), 12435–12452 (2012).
[Crossref]

R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
[Crossref] [PubMed]

2011 (5)

S. Sarkar, E. Bekyarova, S. Niyogi, and R. C. Haddon, “Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile,” J. Am. Chem. Soc. 133(10), 3324–3327 (2011).
[Crossref] [PubMed]

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

X. Wang, J.-B. Xu, C. Wang, J. Du, and W. Xie, “High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers,” Adv. Mater. 23(21), 2464–2468 (2011).
[Crossref] [PubMed]

Z. Liu, A. A. Bol, and W. Haensch, “Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers,” Nano Lett. 11(2), 523–528 (2011).
[Crossref] [PubMed]

D. Samanta and A. Sarkar, “Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications,” Chem. Soc. Rev. 40(5), 2567–2592 (2011).
[Crossref] [PubMed]

2010 (3)

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
[Crossref] [PubMed]

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

2009 (1)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

2007 (4)

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2),” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
[Crossref] [PubMed]

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

2006 (2)

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[Crossref] [PubMed]

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films 515(4), 1433–1438 (2006).
[Crossref]

2005 (1)

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005).
[Crossref] [PubMed]

2004 (1)

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[Crossref] [PubMed]

2002 (2)

N. K. Chaki and K. Vijayamohanan, “Self-assembled monolayers as a tunable platform for biosensor applications,” Biosens. Bioelectron. 17(1-2), 1–12 (2002).
[Crossref] [PubMed]

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

2001 (1)

H. Sugimura, T. Hanji, O. Takai, T. Masuda, and H. Misawa, “Photolithography based on organosilane self-assembled monolayer resist,” Electrochim. Acta 47(1-2), 103–107 (2001).
[Crossref]

2000 (1)

K. Nakano, T. Sato, M. Tazaki, and M. Takagi, “Self-assembled monolayer formation from decaneselenol on polycrystalline gold as characterized by electrochemical measurements, quartz-crystal microbalance, XPS, and IR spectroscopy,” Langmuir 16(5), 2225–2229 (2000).
[Crossref]

1997 (3)

G. E. Poirier, “Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy,” Chem. Rev. 97(4), 1117–1128 (1997).
[Crossref] [PubMed]

A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, “Structure and Dynamics In Alkanethiolate Monolayers Self-Assembled On Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study,” J. Am. Chem. Soc. 119(11), 2682–2692 (1997).
[Crossref]

M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a molecular junction,” Science 278(5336), 252–254 (1997).
[Crossref]

1996 (1)

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev. 96(4), 1533–1554 (1996).
[Crossref] [PubMed]

1995 (1)

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

1993 (2)

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

I. Willner, A. Riklin, B. Shoham, D. Rivenzon, and E. Katz, “Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes,” Adv. Mater. 5(12), 912–915 (1993).
[Crossref]

1992 (1)

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114(13), 5221–5230 (1992).
[Crossref]

1989 (1)

N. Tillman, A. Ulman, and T. L. Penner, “Formation of multilayers by self-assembly,” Langmuir 5(1), 101–111 (1989).
[Crossref]

1988 (1)

N. Tillman, A. Ulman, J. S. Schildkraut, and T. L. Penner, “Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation,” J. Am. Chem. Soc. 110(18), 6136–6144 (1988).
[Crossref] [PubMed]

1985 (1)

M. Pomerantz, A. Segmüller, L. Netzer, and J. Sagiv, “Coverage of Si substrates by self-assembling monolayers and multilayers as measured by IR, wettability and X-ray diffraction,” Thin Solid Films 132(1-4), 153–162 (1985).
[Crossref]

1983 (1)

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

1980 (1)

J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc. 102(1), 92–98 (1980).
[Crossref]

1965 (1)

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Ajayan, P. M.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Alivisatos, A. P.

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114(13), 5221–5230 (1992).
[Crossref]

Anderson, A. Y.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Aspnes, D.

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Aviv, H.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Badia, A.

A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, “Structure and Dynamics In Alkanethiolate Monolayers Self-Assembled On Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study,” J. Am. Chem. Soc. 119(11), 2682–2692 (1997).
[Crossref]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Baptiste, A.

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

Barad, H.-N.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Bardeau, J. F.

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

Barlow, D. E.

R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
[Crossref] [PubMed]

Bekyarova, E.

S. Sarkar, E. Bekyarova, S. Niyogi, and R. C. Haddon, “Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile,” J. Am. Chem. Soc. 133(10), 3324–3327 (2011).
[Crossref] [PubMed]

Belin, M.

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

Beltram, F.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2),” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Bhushan, B.

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

Blake, P.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Boehm, M.

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

Bol, A. A.

Z. Liu, A. A. Bol, and W. Haensch, “Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers,” Nano Lett. 11(2), 523–528 (2011).
[Crossref] [PubMed]

Booth, T. J.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

Bouhadana, Y.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Brecht, A.

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Bulovic, V.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Burgin, T. P.

M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a molecular junction,” Science 278(5336), 252–254 (1997).
[Crossref]

Canepa, M.

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Casiraghi, C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Castro Neto, A. H.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

Cavalleri, O.

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

Cernetic, N.

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

Chaki, N. K.

N. K. Chaki and K. Vijayamohanan, “Self-assembled monolayers as a tunable platform for biosensor applications,” Biosens. Bioelectron. 17(1-2), 1–12 (2002).
[Crossref] [PubMed]

Chaudhari, V.

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

Chen, C.-W.

S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, “Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,” Nano Lett. 12(2), 964–969 (2012).
[Crossref] [PubMed]

Chen, J.

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

Chen, K.

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

Chen, S.-Y.

S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, “Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,” Nano Lett. 12(2), 964–969 (2012).
[Crossref] [PubMed]

Chinnala, J.

G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
[Crossref] [PubMed]

Ciszek, J. W.

R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
[Crossref] [PubMed]

Colvin, V. L.

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114(13), 5221–5230 (1992).
[Crossref]

Connor, J. H.

G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
[Crossref] [PubMed]

Cuccia, L.

A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, “Structure and Dynamics In Alkanethiolate Monolayers Self-Assembled On Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study,” J. Am. Chem. Soc. 119(11), 2682–2692 (1997).
[Crossref]

Daaboul, G. G.

G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
[Crossref] [PubMed]

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
[Crossref] [PubMed]

Davies, J. A.

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

De Palma, R.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films 515(4), 1433–1438 (2006).
[Crossref]

Dehaen, W.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films 515(4), 1433–1438 (2006).
[Crossref]

Demers, L.

A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, “Structure and Dynamics In Alkanethiolate Monolayers Self-Assembled On Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study,” J. Am. Chem. Soc. 119(11), 2682–2692 (1997).
[Crossref]

Dresselhaus, M. S.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Du, J.

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

X. Wang, J.-B. Xu, C. Wang, J. Du, and W. Xie, “High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers,” Adv. Mater. 23(21), 2464–2468 (2011).
[Crossref] [PubMed]

Er, D.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Esaulov, V. A.

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Gao, T.

T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
[Crossref] [PubMed]

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[Crossref] [PubMed]

Gao, W.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Gauglitz, G.

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005).
[Crossref] [PubMed]

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Ge, L.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Geim, A. K.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

George, A.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Gibaud, A.

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

Gokus, T.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Goldberg, B. B.

G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
[Crossref] [PubMed]

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
[Crossref] [PubMed]

Goldstein, A. N.

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114(13), 5221–5230 (1992).
[Crossref]

Gooding, J. J.

J. Liu, J. Tang, and J. J. Gooding, “Strategies for chemical modification of graphene and applications of chemically modified graphene,” J. Mater. Chem. 22(25), 12435–12452 (2012).
[Crossref]

Haddon, R. C.

S. Sarkar, E. Bekyarova, S. Niyogi, and R. C. Haddon, “Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile,” J. Am. Chem. Soc. 133(10), 3324–3327 (2011).
[Crossref] [PubMed]

Haensch, W.

Z. Liu, A. A. Bol, and W. Haensch, “Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers,” Nano Lett. 11(2), 523–528 (2011).
[Crossref] [PubMed]

Hanji, T.

H. Sugimura, T. Hanji, O. Takai, T. Masuda, and H. Misawa, “Photolithography based on organosilane self-assembled monolayer resist,” Electrochim. Acta 47(1-2), 103–107 (2001).
[Crossref]

Hartschuh, A.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Harutyunyan, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Heremans, P.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films 515(4), 1433–1438 (2006).
[Crossref]

Hill, E. W.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

Hilmer, A. J.

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Ho, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Ho, P.-H.

S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, “Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,” Nano Lett. 12(2), 964–969 (2012).
[Crossref] [PubMed]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Hu, P.

Y. Li, C.-Y. Xu, P. Hu, and L. Zhen, “Carrier control of MoS2 nanoflakes by functional self-assembled monolayers,” ACS Nano 7(9), 7795–7804 (2013).
[Crossref] [PubMed]

Hutchins, D. O.

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

Hwang, G. M.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
[Crossref] [PubMed]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Janssen, D.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films 515(4), 1433–1438 (2006).
[Crossref]

Jen, A. K. Y.

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

Jia, X.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Jiang, D.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

Jin, Z.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Katz, E.

I. Willner, A. Riklin, B. Shoham, D. Rivenzon, and E. Katz, “Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes,” Adv. Mater. 5(12), 912–915 (1993).
[Crossref]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Klauk, H.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

Klitzing, K. V.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

Koinkar, V. N.

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

Kong, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Kono, J.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Kraus, G.

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Krauss, B.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

Krueger, B. W.

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

Kulkarni, A. V.

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

Kupfer, B.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Lafkioti, M.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

Lai, X.

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

Lee, W.-K.

R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
[Crossref] [PubMed]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lei, S.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lennox, R. B.

A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, “Structure and Dynamics In Alkanethiolate Monolayers Self-Assembled On Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study,” J. Am. Chem. Soc. 119(11), 2682–2692 (1997).
[Crossref]

Li, J.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Li, C.-Y. Xu, P. Hu, and L. Zhen, “Carrier control of MoS2 nanoflakes by functional self-assembled monolayers,” ACS Nano 7(9), 7795–7804 (2013).
[Crossref] [PubMed]

Lidorikis, E.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Liu, D.

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

Liu, J.

J. Liu, J. Tang, and J. J. Gooding, “Strategies for chemical modification of graphene and applications of chemically modified graphene,” J. Mater. Chem. 22(25), 12435–12452 (2012).
[Crossref]

Liu, Z.

Z. Liu, A. A. Bol, and W. Haensch, “Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers,” Nano Lett. 11(2), 523–528 (2011).
[Crossref] [PubMed]

Lohmann, T.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

Lopez, C. A.

G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
[Crossref] [PubMed]

Lou, J.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Lu, J.

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[Crossref] [PubMed]

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[Crossref] [PubMed]

Ma, H.

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

Mahm, W.

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Maidecchi, G.

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

Malitson, I.

Maoz, R.

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

Martelet, C.

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

Masuda, T.

H. Sugimura, T. Hanji, O. Takai, T. Masuda, and H. Misawa, “Photolithography based on organosilane self-assembled monolayer resist,” Electrochim. Acta 47(1-2), 103–107 (2001).
[Crossref]

McNicholas, T. P.

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Miller, B. L.

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[Crossref] [PubMed]

Misawa, H.

H. Sugimura, T. Hanji, O. Takai, T. Masuda, and H. Misawa, “Photolithography based on organosilane self-assembled monolayer resist,” Electrochim. Acta 47(1-2), 103–107 (2001).
[Crossref]

Morin, F.

A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, “Structure and Dynamics In Alkanethiolate Monolayers Self-Assembled On Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study,” J. Am. Chem. Soc. 119(11), 2682–2692 (1997).
[Crossref]

Muller, C. J.

M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a molecular junction,” Science 278(5336), 252–254 (1997).
[Crossref]

Najmaei, S.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Nakano, K.

K. Nakano, T. Sato, M. Tazaki, and M. Takagi, “Self-assembled monolayer formation from decaneselenol on polycrystalline gold as characterized by electrochemical measurements, quartz-crystal microbalance, XPS, and IR spectroscopy,” Langmuir 16(5), 2225–2229 (2000).
[Crossref]

Netzer, L.

M. Pomerantz, A. Segmüller, L. Netzer, and J. Sagiv, “Coverage of Si substrates by self-assembling monolayers and multilayers as measured by IR, wettability and X-ray diffraction,” Thin Solid Films 132(1-4), 153–162 (1985).
[Crossref]

Nezich, D.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Niyogi, S.

S. Sarkar, E. Bekyarova, S. Niyogi, and R. C. Haddon, “Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile,” J. Am. Chem. Soc. 133(10), 3324–3327 (2011).
[Crossref] [PubMed]

Novoselov, K. S.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Ocko, B. M.

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

Odoni, L.

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

Ozyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, S.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Paulus, G. L. C.

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Pellegrini, V.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2),” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Penner, T. L.

N. Tillman, A. Ulman, and T. L. Penner, “Formation of multilayers by self-assembly,” Langmuir 5(1), 101–111 (1989).
[Crossref]

N. Tillman, A. Ulman, J. S. Schildkraut, and T. L. Penner, “Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation,” J. Am. Chem. Soc. 110(18), 6136–6144 (1988).
[Crossref] [PubMed]

Piazza, V.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2),” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Pingue, P.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2),” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Poirier, G. E.

G. E. Poirier, “Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy,” Chem. Rev. 97(4), 1117–1128 (1997).
[Crossref] [PubMed]

Pomerantz, M.

M. Pomerantz, A. Segmüller, L. Netzer, and J. Sagiv, “Coverage of Si substrates by self-assembling monolayers and multilayers as measured by IR, wettability and X-ray diffraction,” Thin Solid Films 132(1-4), 153–162 (1985).
[Crossref]

Prato, M.

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

Qian, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

Reed, M. A.

M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a molecular junction,” Science 278(5336), 252–254 (1997).
[Crossref]

Reina, A.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Riklin, A.

I. Willner, A. Riklin, B. Shoham, D. Rivenzon, and E. Katz, “Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes,” Adv. Mater. 5(12), 912–915 (1993).
[Crossref]

Rivenzon, D.

I. Willner, A. Riklin, B. Shoham, D. Rivenzon, and E. Katz, “Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes,” Adv. Mater. 5(12), 912–915 (1993).
[Crossref]

Robinson, J. T.

R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
[Crossref] [PubMed]

Roddaro, S.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2),” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Rosh-Hodesh, E.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Rothberg, L. J.

T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
[Crossref] [PubMed]

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[Crossref] [PubMed]

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[Crossref] [PubMed]

Rühle, S.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Sagiv, J.

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

M. Pomerantz, A. Segmüller, L. Netzer, and J. Sagiv, “Coverage of Si substrates by self-assembling monolayers and multilayers as measured by IR, wettability and X-ray diffraction,” Thin Solid Films 132(1-4), 153–162 (1985).
[Crossref]

J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc. 102(1), 92–98 (1980).
[Crossref]

Samanta, D.

D. Samanta and A. Sarkar, “Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications,” Chem. Soc. Rev. 40(5), 2567–2592 (2011).
[Crossref] [PubMed]

Sarkar, A.

D. Samanta and A. Sarkar, “Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications,” Chem. Soc. Rev. 40(5), 2567–2592 (2011).
[Crossref] [PubMed]

Sarkar, S.

S. Sarkar, E. Bekyarova, S. Niyogi, and R. C. Haddon, “Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile,” J. Am. Chem. Soc. 133(10), 3324–3327 (2011).
[Crossref] [PubMed]

Sato, T.

K. Nakano, T. Sato, M. Tazaki, and M. Takagi, “Self-assembled monolayer formation from decaneselenol on polycrystalline gold as characterized by electrochemical measurements, quartz-crystal microbalance, XPS, and IR spectroscopy,” Langmuir 16(5), 2225–2229 (2000).
[Crossref]

Schildkraut, J. S.

N. Tillman, A. Ulman, J. S. Schildkraut, and T. L. Penner, “Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation,” J. Am. Chem. Soc. 110(18), 6136–6144 (1988).
[Crossref] [PubMed]

Segmüller, A.

M. Pomerantz, A. Segmüller, L. Netzer, and J. Sagiv, “Coverage of Si substrates by self-assembling monolayers and multilayers as measured by IR, wettability and X-ray diffraction,” Thin Solid Films 132(1-4), 153–162 (1985).
[Crossref]

Sheehan, P. E.

R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
[Crossref] [PubMed]

Shenoy, V. B.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Shih, C.-J.

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Shimizu, S.

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Shiue, R.-J.

S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, “Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,” Nano Lett. 12(2), 964–969 (2012).
[Crossref] [PubMed]

Shoham, B.

I. Willner, A. Riklin, B. Shoham, D. Rivenzon, and E. Katz, “Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes,” Adv. Mater. 5(12), 912–915 (1993).
[Crossref]

Smet, J. H.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

Son, H.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Stine, R.

R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
[Crossref] [PubMed]

Strano, M. S.

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Strohsahl, C. M.

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[Crossref] [PubMed]

Studna, A.

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Sugimura, H.

H. Sugimura, T. Hanji, O. Takai, T. Masuda, and H. Misawa, “Photolithography based on organosilane self-assembled monolayer resist,” Electrochim. Acta 47(1-2), 103–107 (2001).
[Crossref]

Takagi, M.

K. Nakano, T. Sato, M. Tazaki, and M. Takagi, “Self-assembled monolayer formation from decaneselenol on polycrystalline gold as characterized by electrochemical measurements, quartz-crystal microbalance, XPS, and IR spectroscopy,” Langmuir 16(5), 2225–2229 (2000).
[Crossref]

Takai, O.

H. Sugimura, T. Hanji, O. Takai, T. Masuda, and H. Misawa, “Photolithography based on organosilane self-assembled monolayer resist,” Electrochim. Acta 47(1-2), 103–107 (2001).
[Crossref]

Tang, J.

J. Liu, J. Tang, and J. J. Gooding, “Strategies for chemical modification of graphene and applications of chemically modified graphene,” J. Mater. Chem. 22(25), 12435–12452 (2012).
[Crossref]

Tazaki, M.

K. Nakano, T. Sato, M. Tazaki, and M. Takagi, “Self-assembled monolayer formation from decaneselenol on polycrystalline gold as characterized by electrochemical measurements, quartz-crystal microbalance, XPS, and IR spectroscopy,” Langmuir 16(5), 2225–2229 (2000).
[Crossref]

Tillman, N.

N. Tillman, A. Ulman, and T. L. Penner, “Formation of multilayers by self-assembly,” Langmuir 5(1), 101–111 (1989).
[Crossref]

N. Tillman, A. Ulman, J. S. Schildkraut, and T. L. Penner, “Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation,” J. Am. Chem. Soc. 110(18), 6136–6144 (1988).
[Crossref] [PubMed]

Tischler, Y. R.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Toccafondi, C.

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

Tour, J. M.

M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a molecular junction,” Science 278(5336), 252–254 (1997).
[Crossref]

Ulman, A.

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev. 96(4), 1533–1554 (1996).
[Crossref] [PubMed]

N. Tillman, A. Ulman, and T. L. Penner, “Formation of multilayers by self-assembly,” Langmuir 5(1), 101–111 (1989).
[Crossref]

N. Tillman, A. Ulman, J. S. Schildkraut, and T. L. Penner, “Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation,” J. Am. Chem. Soc. 110(18), 6136–6144 (1988).
[Crossref] [PubMed]

Unlü, M. S.

G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
[Crossref] [PubMed]

Ünlü, M. S.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
[Crossref] [PubMed]

Verlaak, S.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films 515(4), 1433–1438 (2006).
[Crossref]

Vijayamohanan, K.

N. K. Chaki and K. Vijayamohanan, “Self-assembled monolayers as a tunable platform for biosensor applications,” Biosens. Bioelectron. 17(1-2), 1–12 (2002).
[Crossref] [PubMed]

Wan, X.

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

Wang, C.

X. Wang, J.-B. Xu, C. Wang, J. Du, and W. Xie, “High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers,” Adv. Mater. 23(21), 2464–2468 (2011).
[Crossref] [PubMed]

Wang, Q. H.

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Wang, W.-H.

S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, “Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,” Nano Lett. 12(2), 964–969 (2012).
[Crossref] [PubMed]

Wang, X.

X. Wang, J.-B. Xu, C. Wang, J. Du, and W. Xie, “High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers,” Adv. Mater. 23(21), 2464–2468 (2011).
[Crossref] [PubMed]

Wen, K.

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

Willner, I.

I. Willner, A. Riklin, B. Shoham, D. Rivenzon, and E. Katz, “Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes,” Adv. Mater. 5(12), 912–915 (1993).
[Crossref]

Wu, S.

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

Xie, W.

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

X. Wang, J.-B. Xu, C. Wang, J. Du, and W. Xie, “High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers,” Adv. Mater. 23(21), 2464–2468 (2011).
[Crossref] [PubMed]

Xu, C.-Y.

Y. Li, C.-Y. Xu, P. Hu, and L. Zhen, “Carrier control of MoS2 nanoflakes by functional self-assembled monolayers,” ACS Nano 7(9), 7795–7804 (2013).
[Crossref] [PubMed]

Xu, J.

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

Xu, J.-B.

X. Wang, J.-B. Xu, C. Wang, J. Du, and W. Xie, “High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers,” Adv. Mater. 23(21), 2464–2468 (2011).
[Crossref] [PubMed]

Xu, X.

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Yakobson, B. I.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Yang, R.

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

Yurt, A.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
[Crossref] [PubMed]

Zaban, A.

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

Zhang, Q.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Zhang, X.

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
[Crossref] [PubMed]

Zhen, L.

Y. Li, C.-Y. Xu, P. Hu, and L. Zhen, “Carrier control of MoS2 nanoflakes by functional self-assembled monolayers,” ACS Nano 7(9), 7795–7804 (2013).
[Crossref] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhou, C.

M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a molecular junction,” Science 278(5336), 252–254 (1997).
[Crossref]

Zou, X.

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

Zschieschang, U.

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

ACS Comb Sci (1)

A. Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y. R. Tischler, S. Rühle, and A. Zaban, “Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries,” ACS Comb Sci 16(2), 53–65 (2014).
[Crossref] [PubMed]

ACS Nano (2)

Y. Li, C.-Y. Xu, P. Hu, and L. Zhen, “Carrier control of MoS2 nanoflakes by functional self-assembled monolayers,” ACS Nano 7(9), 7795–7804 (2013).
[Crossref] [PubMed]

G. G. Daaboul, C. A. Lopez, J. Chinnala, B. B. Goldberg, J. H. Connor, and M. S. Unlü, “Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and Marburg detection,” ACS Nano 8(6), 6047–6055 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

N. Cernetic, S. Wu, J. A. Davies, B. W. Krueger, D. O. Hutchins, X. Xu, H. Ma, and A. K. Y. Jen, “Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers,” Adv. Funct. Mater. 24(22), 3464–3470 (2014).
[Crossref]

Adv. Mater. (2)

X. Wang, J.-B. Xu, C. Wang, J. Du, and W. Xie, “High-performance graphene devices on SiO₂/Si substrate modified by highly ordered self-assembled monolayers,” Adv. Mater. 23(21), 2464–2468 (2011).
[Crossref] [PubMed]

I. Willner, A. Riklin, B. Shoham, D. Rivenzon, and E. Katz, “Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes,” Adv. Mater. 5(12), 912–915 (1993).
[Crossref]

Anal. Bioanal. Chem. (1)

G. Gauglitz, “Direct optical sensors: principles and selected applications,” Anal. Bioanal. Chem. 381(1), 141–155 (2005).
[Crossref] [PubMed]

Anal. Chem. (3)

T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem. 78(18), 6622–6627 (2006).
[Crossref] [PubMed]

T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
[Crossref] [PubMed]

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91, 063124 (2007).

Biosens. Bioelectron. (1)

N. K. Chaki and K. Vijayamohanan, “Self-assembled monolayers as a tunable platform for biosensor applications,” Biosens. Bioelectron. 17(1-2), 1–12 (2002).
[Crossref] [PubMed]

Chem. Mater. (1)

Z. Jin, T. P. McNicholas, C.-J. Shih, Q. H. Wang, G. L. C. Paulus, A. J. Hilmer, S. Shimizu, and M. S. Strano, “Click chemistry on solution-dispersed graphene and monolayer CVD graphene,” Chem. Mater. 23(14), 3362–3370 (2011).
[Crossref]

Chem. Rev. (2)

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev. 96(4), 1533–1554 (1996).
[Crossref] [PubMed]

G. E. Poirier, “Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy,” Chem. Rev. 97(4), 1117–1128 (1997).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

D. Samanta and A. Sarkar, “Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications,” Chem. Soc. Rev. 40(5), 2567–2592 (2011).
[Crossref] [PubMed]

Electrochim. Acta (1)

H. Sugimura, T. Hanji, O. Takai, T. Masuda, and H. Misawa, “Photolithography based on organosilane self-assembled monolayer resist,” Electrochim. Acta 47(1-2), 103–107 (2001).
[Crossref]

J. Am. Chem. Soc. (5)

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114(13), 5221–5230 (1992).
[Crossref]

J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” J. Am. Chem. Soc. 102(1), 92–98 (1980).
[Crossref]

A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, “Structure and Dynamics In Alkanethiolate Monolayers Self-Assembled On Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study,” J. Am. Chem. Soc. 119(11), 2682–2692 (1997).
[Crossref]

S. Sarkar, E. Bekyarova, S. Niyogi, and R. C. Haddon, “Diels-Alder chemistry of graphite and graphene: graphene as diene and dienophile,” J. Am. Chem. Soc. 133(10), 3324–3327 (2011).
[Crossref] [PubMed]

N. Tillman, A. Ulman, J. S. Schildkraut, and T. L. Penner, “Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation,” J. Am. Chem. Soc. 110(18), 6136–6144 (1988).
[Crossref] [PubMed]

J. Mater. Chem. (1)

J. Liu, J. Tang, and J. J. Gooding, “Strategies for chemical modification of graphene and applications of chemically modified graphene,” J. Mater. Chem. 22(25), 12435–12452 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

X. Wan, K. Chen, J. Du, D. Liu, J. Chen, X. Lai, W. Xie, and J. Xu, “Enhanced performance and fermi-level estimation of coronene-derived graphene transistors on self-assembled monolayer modified substrates in large areas,” J. Phys. Chem. C 117(9), 4800–4807 (2013).
[Crossref]

Langmuir (5)

K. Nakano, T. Sato, M. Tazaki, and M. Takagi, “Self-assembled monolayer formation from decaneselenol on polycrystalline gold as characterized by electrochemical measurements, quartz-crystal microbalance, XPS, and IR spectroscopy,” Langmuir 16(5), 2225–2229 (2000).
[Crossref]

B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, and M. Belin, “Microtribological Characterization Of Self-Assembled and Langmuir-Blodgett Monolayers By Atomic And Friction Force Microscopy,” Langmuir 11(8), 3189–3198 (1995).
[Crossref]

N. Tillman, A. Ulman, and T. L. Penner, “Formation of multilayers by self-assembly,” Langmuir 5(1), 101–111 (1989).
[Crossref]

A. Baptiste, A. Gibaud, J. F. Bardeau, K. Wen, R. Maoz, J. Sagiv, and B. M. Ocko, “X-ray, micro-raman, and infrared spectroscopy structural characterization of self-assembled multilayer silane films with variable numbers of stacked layers,” Langmuir 18(10), 3916–3922 (2002).
[Crossref]

R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, and P. E. Sheehan, “High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene,” Langmuir 28(21), 7957–7961 (2012).
[Crossref] [PubMed]

Nano Lett. (8)

S. Najmaei, X. Zou, D. Er, J. Li, Z. Jin, W. Gao, Q. Zhang, S. Park, L. Ge, S. Lei, J. Kono, V. B. Shenoy, B. I. Yakobson, A. George, P. M. Ajayan, and J. Lou, “Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry,” Nano Lett. 14(3), 1354–1361 (2014).
[Crossref] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7(9), 2711–2717 (2007).
[Crossref] [PubMed]

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett. 10(4), 1149–1153 (2010).
[Crossref] [PubMed]

G. G. Daaboul, A. Yurt, X. Zhang, G. M. Hwang, B. B. Goldberg, and M. S. Ünlü, “High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification,” Nano Lett. 10(11), 4727–4731 (2010).
[Crossref] [PubMed]

Z. Liu, A. A. Bol, and W. Haensch, “Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers,” Nano Lett. 11(2), 523–528 (2011).
[Crossref] [PubMed]

S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, “Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,” Nano Lett. 12(2), 964–969 (2012).
[Crossref] [PubMed]

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2),” Nano Lett. 7(9), 2707–2710 (2007).
[Crossref] [PubMed]

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M. Prato, V. Chaudhari, and V. A. Esaulov, “Spectroscopic ellipsometry of self assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold,” Phys. Chem. Chem. Phys. 15(27), 11559–11565 (2013).
[Crossref] [PubMed]

Phys. Rev. B (1)

D. Aspnes and A. Studna, “Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Science (1)

M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, “Conductance of a molecular junction,” Science 278(5336), 252–254 (1997).
[Crossref]

Sens. Actuators B Chem. (1)

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Thin Solid Films (2)

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films 515(4), 1433–1438 (2006).
[Crossref]

M. Pomerantz, A. Segmüller, L. Netzer, and J. Sagiv, “Coverage of Si substrates by self-assembling monolayers and multilayers as measured by IR, wettability and X-ray diffraction,” Thin Solid Films 132(1-4), 153–162 (1985).
[Crossref]

Other (4)

D. W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions (Elsevier, 2009).

R. Fait-Cohen, “Functionalized silicon oxide surfaces: from monolayers to nanospheres,” in Department of Chemistry (Bar-Ilan University, Ramat-Gan, Israel, 2013).

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

H. A. Macleod, Thin-Film Optical Filters, Fourth Edition (Taylor & Francis, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Illustration of multiple reflections from thin layers of SAM and SiO2 on a silicon substrate.

Fig. 2
Fig. 2

Calculated maps of the expected contrast between the reflectivity of a bare silica-on-silicon sample, and a sample that is coated with a 2.5 nm-thick SAM created using OTS. Contrast is given as function of the silica layer thickness and the incident wavelength.

Fig. 3
Fig. 3

(a) - Bright-field microscope image of multiple patterns, defined in an OTS monolayer through electron-beam lithography. Scales are noted in the image. The magnification of the microscope was 100X. No filters were used in the optical path. The dashed line indicates the trajectory of a line-scan of the sensor output readout, shown in panel (c). The arrow indicates the scanning direction. (b) – Dark-field microscope image of the same monolayer patterns. (c) - Readout of the sensor output values, taken from the image of panel (a), as a function of position (in pixels). The sensor output readings (in gray levels, GLs) were extracted along a line that is drawn for illustration on panel (a). The line scan crosses the boundary between the 10 X 10 µm2 SAM-coated square and an uncoated region. Data was averaged over scans of 60 parallel lines.

Fig. 4
Fig. 4

AFM images and height scans of multiple patterns, defined in an OTS monolayer through electron-beam lithography. Top row: feature width of 200 nm. Bottom row: feature width of 500nm.

Fig. 5
Fig. 5

(a) – Illustration of a diamond-shaped monolayer pattern, defined using a photo-lithography and lift-off process. The yellow dashed square indicates the region shown in the image of panel (b). (b) – CMOS camera image of OTS SAM-coated and uncoated regions in the sample.

Fig. 6
Fig. 6

(a) – Illustration of a diamond-shaped monolayer pattern, defined using a photo-lithography and lift-off process. The yellow dashed square indicates the region scanned in position-dependent Raman spectrometry. (b) – Raman scattering spectrum collected from within the OTS-coated region of the sample under test. A characteristic peak at 2847 cm−1 is evident. (c) – Map of the strength of the 2847 cm−1 Raman peak as function of position (in μm) across the sample. The expected diamond-shaped pattern, defined by photo-lithography, is apparent.

Fig. 7
Fig. 7

Measured (red) and simulated (blue) contrasts between the reflectivities of an OTS SAM-coated region and an uncoated region of a silica-on-silicon sample, as a function of incident wavelength. Calculations were performed for a silica layer thickness of 298 nm.

Fig. 8
Fig. 8

(a) – Illustration of a diamond-shaped monolayer pattern, defined using a photo-lithography and lift-off process. The yellow dashed square indicates the region imaged in a bright-field microscope. (b), (c) - Microscope images of a silica-on-silicon sample, filtered at 640 nm (panel b) and 540 nm (panel c) wavelengths. The edge of the region covered by an OTS SAM can be observed in the images. The coated region is characterized by a weaker reflectivity than that of its surroundings at 640 nm, and by a stronger reflectivity at 540 nm. Dashed lines in panels (b) and (c) indicate the trajectories of line-scans of the sensor output readout, shown in Fig. 9 below. The arrows indicate the scanning direction.

Fig. 9
Fig. 9

Readout of the sensor output values, taken from the images of Fig. 8, as a function of position (in pixels). The sensor output readings (in gray levels, GLs) were extracted along lines that are drawn for illustration on panels (b) and (c) of Fig. 8. The line scans cross the boundaries between SAM-coated and bare regions of the imaged silica-on-silicon sample. Data was averaged over 200 parallel line scans. When the illumination is filtered at 640 nm, the line scan shows an increase in GL reading when moving from coated to bare areas of the sample. The opposite is true for 540 nm wavelength. The gradual decrease in GL as a function of position is due to non-uniformity of the illumination.

Fig. 10
Fig. 10

Illustration of the bi-layer deposition layout. The area of overlap between monolayers is the region in which the bi-layer is formed.

Fig. 11
Fig. 11

(a) - a CMOS camera image of a silica-on-silicon sample, containing patterned regions of self-assembled single-layers and double-layers of methyl 11-(trichlorosilyl)undecanoate. (b) - enlarged bright-field microscope image of the upper right-hand corner of the sample (see Fig. 10). A 10 nm-wide optical bandpass filter, centered at 520 nm, was used to enhance the contrast between regions. Dashed lines indicate the trajectories of line-scans of the sensor output readout, shown in panel (c). The arrows indicate the scanning direction. (c) - Readout of the sensor output values, taken from the image of panel (b), as a function of position (in pixels). The sensor output readings (in gray levels, GLs) were extracted along lines that are drawn on panels (b), for illustration. The line scans cross the boundaries between a bare and a monolayer-coated region, and between a monolayer-coated and a bilayer-coated region. Data was averaged over 200 parallel line scans. The gradual decrease in GL as a function of position is due to non-uniformity of the illumination.

Fig. 12
Fig. 12

Illustration of octadecyltrichlorosilane (OTS) monolayer on silica on silicon wafer.

Fig. 13
Fig. 13

Illustration of methyl 11-(trichlorosilyl)undecanoate bilayer formation on a silica-on-silicon sample. (a) denotes LiAlH4, (b) denotes second layer of methyl 11-(trichlorosilyl)undecanoate.

Fig. 14
Fig. 14

FTIR monitoring of the construction of a bi-layer film. The appearance and disappearance of the peak at ~1740 cm−1 indicates the deposition of the methyl 11-(trichlorosilyl)undecanoate and its subsequent reduction.

Fig. 15
Fig. 15

Synthesis of methyl 11-(trichlorosilyl)undecanoate.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ B C ]=[ cos δ 1 isin δ 1 η 1 i η 1 sin δ 1 cos δ 1 ][ cos δ 2 isin δ 2 η 2 i η 2 sin δ 2 cos δ 2 ][ 1 η 3 ]
Υ= C B
R= | r | 2 = | η 0 Υ η 0 +Υ | 2
ΔR(λ, d 2 ) R(λ, d 2 =0)R(λ, d 2 ) R(λ, d 2 =0)

Metrics